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Abstract: The Controller Area Network (CAN) is a broadcast medium providing
advanced features, which make it suitable for many real-time applications. Common
application layer protocols designed for CAN (e.g. CAL, SDS, DeviceNet) exploit
these features in order to provide reliable real-time communication. However, they do
not provide a consistent global message ordering in certain fault situations, nor do
they consider temporal properties of the application.

This paper presents a multicast protocol which supports timely delivery of messages
and guarantees atomic order, under anticipated fault conditions. In order to support
causal ordering of events, the paper provides a discussion on establishing Lamport’s
precedence relation between events by appropriate usage of real-time multicasts.

In a CAN-based distributed system, the restricted communication bandwidth consti-
tutes a serious bottle-neck. Therefore an important feature of this multicast protocol is
to achieve optimal protocol termination time while requiring minimum communication
overhead.
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1. INTRODUCTION Definition 1. Atomic multicast delivery — Let G
be a multicast group, i.e. a set of objects which
must receive a multicast message. Let del;(m)
denote the delivery of a message m to an object
i and '—’ define the precedence relation. Then
two messages m and m’' are delivered atomically

to the group G, if and only if the following holds:

Future computer systems will, to a large extent,
monitor and control real-world processes. This
results in an inevitable demand for timeliness and
reliability. Distributed systems which inherently
provide extensibility and immunity against single

failures, are an adequate architecture to cope Vi,j: i,j €G A i,j non-faulty
with spatially distributed real world applications. = ( del;(m) — del;(m")
Moreover, the availability of inexpensive, powerful

. ) !
micro-controllers promotes distributed solutions. & (delj(m) — del;(m’))

Group communication is the basic mechanism
to coordinate distributed activities. In order to
control the competition and cooperation among

In other words, atomic delivery of multicast mes-
sages implies two properties:

distributed processes, and to allow for object
replication, atomic delivery of multicast messages
is inevitable. In this paper, the following definition
of atomic multicast delivery is used.

e Consistent Delivery: if a multicast message
is received by a non-faulty group member,
then it is received by all non-faulty group
members.



e Consistent Ordering: messages received by
different non-faulty group members, are re-
ceived in the same order.

Achieving the consistent delivery requires either a
two-phased commit protocol with a considerable
acknowledgment overhead (Babaoglu and Drum-
mond, 1985; Birman and Joseph, 1987; Chang and
Maxemchuk, 1984), or a mechanism to retransmit
each message so many times that the probability
of losing all copies is negligible (Cristian, 1990; Li-
vani, 1998; Rufino et al., 1998).

Consensus on the ordering of the messages comes
free with the two-phased commit protocol. But
if the multiple transmission approach is applied,
an additional mechanism for establishing a unique
order of the messages must be used. (Schneider,
1990) has described an approach to achieve con-
sensus on the message ordering among a group of
receivers, using a time-dependent unique identifier
of messages. An approach which exploits knowl-
edge about the delivery deadlines of the messages,
has been introduced by (Cristian et al., 1985).
A similar mechanism has been proposed for em-
bedded applications by (Zuberi and Shin, 1996).
These approaches, however, rely on the timely and
reliable delivery of all messages.

The ordering scheme presented in this paper con-
siders also the late transmission of soft real-time
messages, which is a timing failure of the mes-
sage transmission, but does not lead to a system
failure. As already shown in (Livani et al., 1998)
it is possible to schedule the real-time commu-
nication in a CAN-bus system so that hard real-
time messages are always transmitted timely while
soft transmission deadlines are missed in overload
situations. In such a system it is not possible to
guarantee a total delivery order among all hard
and soft real-time messages.

To see the reason of this restriction consider
a hard real-time message H, a soft real-time
message S, and two nodes N; and N,. Since
no latest delivery time can be guaranteed for
S, its consistent delivery must depend on the
reception of a signal o from the bus (e.g. S itself,
a commit packet, or another packet depending
on the protocol). Assume that N receives o at
time ¢, and N, does not because of a single
communication error. If N; and N> receive H after
t; and Ny does not receive o until dy (i.e. the
deadline of H) due to bus overload, then at dy,
N1 must deliver S before H, and N, must deliver
H before S.

Due to the restriction mentioned above, this paper
proposes an ordering algorithm, which establishes
a total order for the messages of each class (i.e.
hard and soft real-time) separately.

The paper is organized as follows: section 2 intro-
duces some properties of the CAN bus which are
essential to understand the approach. Section 3
presents the deadline-based total ordering scheme.
Section 4 discusses how to reflect Lamport’s prece-
dence relation using the deadline-based total or-
der. A summary concludes the paper.

2. SOME PROPERTIES OF CAN

The CAN-bus (BOSCH, 1991) is a priority bus
targeted to operate in a noisy environment with
speeds of up to 1 Mbit/s, exchanging small real-
time control messages. The priority-based arbitra-
tion mechanism of the CAN bus can be exploited
to guarantee the timely transmission of hard real-
time messages under anticipated load and fault
conditions (Tindell and Burns, 1994). In order
to provide best effort scheduling of soft real-time
communication in a CAN bus while guaranteeing
hard deadlines, different approaches may be ap-
plied (Davis, 1994; Livani et al., 1998) which are
based on multiple priority classes.

The CAN protocol provides efficient hardware-
implemented error handling, which is based on
various error detection mechanisms with a very
high total coverage, and an approach to imme-
diately signaling the error condition. These fea-
tures of the CAN protocol ensure atomic broad-
cast delivery in most fault situations. However, if
an error occurs within the transmission time of
the two last bits of a data frame, some receivers
might accept and other receivers reject the frame.
Although the sender (or in case of immediate
sender crash an alternative mechanism like Eager
Diffusion (Rufino et al., 1998) or Shadow Retrans-
mitter (Livani, 1998)) will retransmit the frame,
the consistent ordering of the incoming messages
in different sites is not trivial due to the possible
transmission of other (high-priority) messages be-
tween the first and the second transmission of a
frame. Another problem caused by such errors is
the duplicate frame reception by some receivers.

In such situations, commercially available ap-
plication level protocols for CAN, like CAL
(CiA, 1993), SDS (Crovella, 1994), and DeviceNet
(Noonen et al., 1994) manage to discard frame
duplicates, but they fail to provide consistent mes-
sage ordering among a group of receivers.

Relying on a feasible and flexible real-time schedul-
ing policy (Davis, 1994; Livani et al., 1998) com-
bined with a reliable broadcast delivery mecha-
nism (Livani, 1998; Rufino et al., 1998), following
assumptions can be made about the communica-
tion system in a CAN bus:

(A1) Hard real-time messages are transmitted
timely (i.e. until their transmission deadline)



under anticipated fault scenarios, even in over-
load situations.

(A2) Soft real-time messages are scheduled by
static or dynamic priorities, but their deadlines
may be missed in overload situations.

(A3) If a non-faulty receiver receives a message,
then eventually all non-faulty receivers receive
the message.

Given these assumptions, atomic multicasting can
be achieved by establishing a consistent global
delivery order for multicast messages.

3. THE DEADLINE-BASED TOTAL
ORDERING SCHEME

This section introduces a scheme to achieve glob-
ally consistent ordering of multicast messages in
a CAN-based system. The algorithm presented
here relies on the assumptions Al through A3 in
order to achieve atomic multicast with minimum
communication overhead, based on the knowledge
about the message transmission deadlines. The
transmission deadline of a message denotes the
time, at which the message must be successfully
transmitted to all non-faulty destination sites.
Since the transmission deadline is tightly related
to the time, where the sender expects the mes-
sage delivery to all receiving application objects,
this ordering mechanism allows an application
specific ordering, which is related to temporal
requirements. Although this approach is similar
to some other ones known from much previous
work (Cristian et al., 1985; Schneider, 1990), it
considers the late transmission of soft real-time
messages in overload situations. Another advan-
tage of this scheme is that it needs no additional
communication to establish a globally consistent
ordering decision.

Let m and m' be two real-time messages with
transmission deadlines d,, and d,,-. Then the
deadline-based ordering algorithm implements the
following rule:

(01) dy, < dpyy = delj(m) — del;(m’)

This means that if the deadline of the message
m is before the deadline of the message m', then
m must be delivered to destination objects before
m'. If the underlying protocol layer adjusts the
transmission deadlines of hard real-time messages
to reserved time-slots (Livani et al., 1998), then
the delivery order of hard real-time messages can
be always established by this rule.

However, when the deadlines of different messages
are equal, the following rule must be used to
ensure the globally consistent decision on delivery
order of messages.

(02) d,, = dp = (delj(m) — del;(m')
< header,, < header )

Where header,, consists of a tuple (d,,, sender,,,
subject,,) and identifies a message uniquely. This
rule requires that different messages sent by the
same sender with the same subject have different
transmission deadlines, otherwise an additional
sequence number (or ”toggle-bit”) must be pro-
vided in the header. Note that this requirement is
also necessary for distinguishing duplicate frames
from successive frames.

3.1 Protocol Termination and End-to-End Delivery

An atomic multicast protocol may terminate and
deliver a message to destination objects, if and
only if a) the message is received and accepted
by all non-faulty destination sites, and b) the
message can be consistently ordered, which means
that no other message will arrive later, which
must precede the current message according to the
ordering criteria.

a) Consistent Message Reception in CAN

In order to minimize the communication over-
head, the nodes must not exchange explicit infor-
mation about the status of their message queues.
Thus they have to conclude this information from
implicit knowledge. Since the underlying message
transfer protocol guarantees the timely transmis-
sion of hard real-time messages under anticipated
fault conditions, the protocol can assume that a
hard real-time message is consistently transmitted
to all receivers at its deadline. Hence a receiver can
deliver the message to the destination objects at
the transmission deadline.

For soft real-time messages, however, the trans-
mission deadline may be missed because of bus
overload, and hence, late transmission of the mes-
sage is still possible. In these situations, the dead-
line cannot be used to specify the time when
the message may be delivered. However, in such
situations the following considerations lead to a
decision criterion:

Claim 2. If a node has received a message m,
and then another message with lower priority is
observed on the CAN bus, or the bus is idle, then
the sender of m will not retransmit it in future.

PROOF. Assume that a message m is trans-
mitted at least once on the CAN bus. Further,
assume that the sending CAN controller still at-
tempts to retransmit m due to the inconsistent
transmission. According to the CAN specification
(BOSCH, 1991), the sender will try to retransmit
m ”immediately”, thus no bus idle period will be



observed before the retransmission of m. Further-
more, no lower-priority message will be transmit-
ted before the retransmission of m, because m
will win the arbitration process against any lower-
priority message. O

As a consequence, the receivers of a soft real-time
message m can be sure that either the sender is
crashed, or the transmission was successful, as
soon as they detect either a bus idle period or
a lower-priority message after receiving m.

If a frame is accepted by a subset of the receivers,
and rejected by other receivers, the immediate
sender crash may lead to inconsistent message
reception. This failure must be tolerated by hav-
ing some nodes retransmit the frame. The Ea-
ger Diffusion Protocol (Rufino et al., 1998) re-
transmits every frame at least by one receiver.
However, due to processing delay the Eager Dif-
fusion Protocol cannot guarantee the immediate
retransmission. The ordering scheme presented in
this paper relies on dedicated Shadow Retransmit-
ters (Livani, 1998), which guarantee immediate
retransmission whenever an inconsistent message
reception is possible. The Shadow retransmitters
also transmit an ultra-low priority frame (called
trailer) at the end of each non-broken sequence of
CAN frames. So an idle bus can be detected by
observing a trailer on the bus.

From the previous discussion, following properties
are derived:

(P1) Any receiver of a hard real-time message m
with deadline d,,, can assume that m will be
received by all sites until d,,.

(P2) Any receiver of a soft real-time message m
can assume that the message has been received
by all sites, if it observes a frame with a lower
priority on the bus after receiving m.

b) Achieving a Consistent Message Order in CAN

In case of hard real-time messages, the knowledge
of time is sufficient for stabilizing the ordering
decision: after a deadline d,,, no hard real-time
message with an earlier deadline will arrive. But
this statement is not true in case of soft real-
time messages. Here, the following assumption
constitutes the constraint necessary to find a
stable ordering decision criterion:

(A4) Every real-time message m is ready to
transmit before d,;, — AT ax, With AT ax being
the maximum time required for a single trans-
mission of an arbitrary frame.

The assumption (A4) concludes the following:
Claim 3. Assume a deadline-based message prior-

ity scheme e.g. (Livani et al., 1998), where a soft
real-time message with a higher priority has an

earlier deadline than a soft real-time message with
a lower priority. If after the transmission deadline
d,, of a soft real-time message m another message
with lower priority is transmitted on the CAN
bus, or the bus is idle, then no other soft real-
time message m' with a deadline d,,y < d,, will
be transmitted later.

PROOF. Assume that a message m' with dead-
line d, < d, is pending for transmission at
the time ¢ > d,,. Because of the deadline-based
priority assignment the priority of m’ is not lower
than the priority of m. Due to (A4), m' has
been pending for transmission at least since d,,,» —
ATax, hence at least since d,;, — ATnax. Hence
the sender of m' must have been trying to trans-
mit m’ at the beginning of every bus-idle period
since d,,, — ATpax. Therefore no idle bus can be
observed between d,,, and the successful transmis-
sion of m'. Also, no lower-priority message can be
transmitted on the bus before m’, because m’ wins
the arbitration process against any lower-priority
message. Thus, if after d,,, a message with a lower
priority than m is transmitted on the CAN bus, or
the bus is idle, then no message m' with d,,,y < d,,
will be transmitted later. O

From the previous discussion, following property
is derived:

(P3) For any soft real-time message m, no pre-
ceding soft real-time message will arrive later,
if after the transmission deadline d,, a lower-
priority message is observed on the bus.

3.2 Atomic Multicast Delivery Algorithm

The proposed atomic multicast delivery algorithm
is based on the following rules:

Order: Messages are ordered by their deadlines.
In case of equal deadlines, the value of the
message header is used for the order decision.

Timel: every received hard real-time message
is delivered at its deadline. (This realizes the
deadline-based order implicitly)

Time2: Every received soft real-time message
must be delivered as soon as either another
message with later deadline, or a bus idle time
is observed after its transmission deadline.

Due to the rule (Time2), the delivery of a soft
real-time message m may be delayed until d,,+
ATax. This must be considered when calculating
the transmission deadline of any soft real-time
message.

In the following, the atomic multicast delivery
algorithm is presented. The algorithm assumes



the availability of a real-time clock, which is
synchronized globally with a bounded inaccuracy.

Atomic_multicast_delivery
initialization:
SRT_q « empty_q;
HRT_q < empty_q;
next_HRT _delivery < eternity;
receive(m,t): /* m is sent or received at ¢t */
if m.dest_group € my_groups
and m.category = HRT then
HRT _q.insert (m);
if m.dl < next_HRT _delivery then
next_HRT _delivery < m.dl;
set_wakeup (next_HRT _delivery);
if m.dest_group € my_groups
and m.category = SRT then
SRT _q.insert (m);
if m.dl < t then
/* overload! Deliver preceding SRTM */
while SRT _qg.head.dl < m.dl
or SRT_g.head < m do
mx < SRT_q.gethead;
SRT_deliver (mx, mx.dest_group);
else
/* Deliver SRTM with passed DL */
while SRT _g.head.dl < t do
mx < SRT_q.gethead;
SRT_deliver (mx, mx.dest_group);
end receive;
wakeup(): /* invoked when the wake—up
time is reached */
mx < HRT_qg.gethead;
HRT _deliver (mx, mx.dest_group);
if HRT _q # empty_q then
next_HRT _delivery <— HRT_q.head.dl;
set_wakeup (next_HRT _delivery);
else
next_HRT _delivery <« eternity;
end wakeup;
bus_idle(t): /* invoked if at time t a
trailer frame is received */
while SRT _g.head.dl < t do
/* Deliver all SRTM with passed DL */
mx < SRT_q.gethead;
SRT _deliver (mx, mx.dest_group);
end bus_idle;
end Atomic_multicast_delivery

4. GLOBAL ORDERING OF EVENTS

The deadline-based ordering of multicast mes-
sages enables a consistent global order between
different events observed in the distributed sys-
tem. In this paper an event is called a global
event, if the object which observes it, sends an
atomic multicast to enforce a global observation
of the event by all concerning objects. As seen by
application objects, the order of global events is

the same as the globally consistent delivery order
of their notification messages. This globally con-
sistent delivery order of messages is established by
the atomic multicast protocol described in section
3.2. Note that if a set of events has to be globally
ordered, then all multicast messages propagating
those events must belong to the same class (hard
or soft real-time).

4.1 Achieving Causal Ordering of Events

If global events have to be ordered according to
their causality, following cases can be observed:

A: Let e and €' be two global events locally ob-
served by an object i, with a causal precedence
relation e —» €', and let m and m' be messages,
which propagate the events e and e’ in the
system. Let d,, denote the deadline of m. In
order to globally agree on the order e — €',
for every object j, the relation del;j(m) —
delj(m') is sufficient. Hence, due to the rule
(O1), the relation d,,, < dp, is sufficient. This
means, that in order to reflect a precedence
order e — €’ globally, 4 must assign deadlines
dm < dyy to the messages propagating e and €’
in the system.

B: Let e and ¢’ be two events observed by two
different objects 7 and j, and e — €', then (ac-
cording to Lamport’s definition of precedence
relation (Lamport, 1978), and the discussion in
section 3.1 ) following conditions hold:

(1) Event e is observed by i at local time T (e).

(2) Event €' is observed by j at local time
Ti(e).

(3) There is a message m sent by 4 at the local
time T%(send;(m)), which propagates the
event e, where T'(e) < T(send;(m)) < dp,.

(4) There is a message m' sent by j at the local
time T (send;(m')), which propagates the
event ¢, where T7(e') < TI(send;(m')) <
dpy -

(5) If j receives m, then it receives m at
the local time TY(del;(m)), where d,, <
T'(delj(m)), and T7(del;(m)) < TI(e').
Thus due to (4) it follows that d,, < dp, -

(6) If j does not receive m, then there is a set of
messages msi, My, M3, -, My, and a set of
objects ki,ks, ks, -, k,, where firstly, k;
receives m and sends mq, ks receives m;
and sends ms,---,k, receives m,_; and
sends my,, and j receives m,. Secondly,
dely, (m) — sendy, (m1), delg,(m1) —
sendy,(ms), ---, and delg, (my,—1) —
sendy,, (my). And thirdly, TV (del;(my,)) <
T7(e'). In this case, d,,, < T* (dely, (m)) <
T+ (sendy, (m1)) < dpm, < T*2(dely,(m1))
< Tk (sendy,(m2)) < dm,- - < dm, <
T’ (delj(my)) < TI(e'). Again, due to (4)
it follows that d,, < d,,.



In either case (i.e. A; B-5; B-6), every object [ in
the system which receives m and m/', will establish
the delivery order del;(m) — del;(m’) due to the
relation d,;, < d,,». Consequently, [ will establish
the precedence order e —» €. Thus, if e and ¢’
are two global events observed in the distributed
system, and e — €' according to Lamport’s
definition of precedence relation, then all non-
faulty objects in the system — which are addressed
by messages propagating e and e’ — will be notified
about e before e, and hence they will establish
consistently the precedence order e — €'.

5. CONCLUSION

The paper introduced a real-time multicast or-
dering scheme, which achieves consistent delivery
ordering of multicast messages using the message
transmission deadlines.

The protocol termination time depends on the
message class. The protocol relies on a medium
access protocol, which guarantees timely and re-
liable transmission of hard real-time messages
to all destination nodes (Livani, 1998; Livani et
al., 1998). Hence, for a hard real-time message the
protocol terminates at the transmission deadline
and delivers the message to destination objects
timely. Under 'normal’ load conditions, the pro-
tocol delivers soft real-time messages up to one
frame transmission time later than their trans-
mission deadlines (cf. rule Time2 in section 3.2).
However, in overload situations, the protocol may
delay the delivery of soft real-time messages until
the end of the overload period plus one frame
transmission time.

The mechanism ensures consistent multicast or-
dering in presence of communication failures lead-
ing to inconsistent global view of the CAN bus
status among non-faulty sites. Common high-level
communication protocols designed for CAN, do
not provide consistent multicast delivery order
among all application objects in these failure sit-
uations.

It was shown, that causal order between events
can be globally established by using the deadline-
based ordering approach.

An important benefit of this scheme is its effi-
ciency: the algorithm requires no additional com-
munication, like acknowledgements etc. In the
Controller Area Network, communication band-
width is a serious bottle-neck. While the comput-
ing power of hardware nodes is increasing rapidly,
the bandwidth of CAN will remain limited to
a maximum of 1 Mbits/sec. This was the main
motivation to develop a multicast scheme which
minimizes communication amount for the price of
some computational overhead.
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