@ MOTOROLA

MC6809

tions.

8-BIT MICROPROCESSING UNIT

The MC6809 is a revolutionary high-performance 8-bit microprocessor
which supports modern programming techniques such as position indepen-
dence, reentrancy, and modular programming.

This third-generation addition to the M6800 Family has major architectural
improvements which include additional registers, instructions, and addressing
modes. ‘

The basic instructions of any computer are greatly enhanced by the
presence of powerful addressing modes. The MC6809 has the most complete
set of addressing modes available on any 8-bit microprocessor today.

The MC6809 has hardware and software features which make it an ideal
processor for higher level language execution or standard controller applica-

MC6800 COMPATIBLE
® Hardware — Interfaces with All M6800 Peripherals
® Software — Upward Source Code Compatible Instruction Set and

Addressing Modes

ARCHITECTURAL FEATURES

Two 16-Bit Index Registers
Two 16-Bit Indexable Stack Pointers

Two 8-Bit Accumulators can be Concatenated to Form One

16-Bit Accumulator

Direct Page Register Aliows Direct Addressing Throughout Memory

HARDWARE FEATURES

On-Chip Oscillator (Crystal Frequency=4 x E)

DMA/BREQ Allows DMA Operation on Memory Refresh }
Fast Interrupt Request Input Stacks Only Condition Code Register

and Program Counter

MRDY Input Extends Data Access Times for Use with Slow

Memory

Interrupt Acknowledge Output Allows Vectoring by Devices
Sync Acknowledge Output Allows for Synchronization to External

Event
Single Bus-Cycle RESET
Single 5-Volt Supply Operation

NMI Inhibited After RESET Until After First Load of Stack Pointer
Early Address Valid Allows Use with Slower Memories

Early Write Data for Dynamic Memories

SOFTWARE FEATURES

10 Addressing Modes
® 6800 Upward Compatible Addressing Modes
Direct Addressing Anywhere in Memory Map
Long Relative Branches
Program Counter Relative
True Indirect Addressing
Expanded Indexed Addressing:

0-, 5, 8-, or 16-Bit Constant Offsets

8- or 16-Bit Accumulator Offsets

Auto Increment/Decrement by 1 or 2
Improved Stack Manipulation

1464 Instructions with Unique Addressing Modes

8 x 8 Unsigned Multiply

16-Bit Arithmetic

Transter/ Exchange All Registers

Push/Pull Any Registers or Any Set of Registers
Load Effective Address

HMOS

(HIGH DENSITY N-CHANNEL, SILICON-GATE)

8-BIT
MICROPROCESSING
UNIT

L SUFFIX
CERAMIC PACKAGE
CASE 715
P SUFFIX
PLASTIC PACKAGE
CASE 711
S SUFFIX
CERDIP PACKAGE
CASE 734
PIN ASSIGNMENT
vssi @~ qofpAAT
NMI[2 39 [IXTAL
TRGQ3 38 [TEXTAL
FIRG Q4 37 QRESET
BsS[5 36 IMRDY
BA[le 35 fa
veell7 A[IE
Aofjs 33 1BMA/BREG
A1fjo 32[rR/W
A2l 31 joo
A3l 30 o1
Adflr2 29 [102
A5[]13 28 [1D3
A6f}14 27 [ID4
A7(hs 26 {105
A8l16 25 [1D6
Asfl7 24 fjO7
Aloff8 23 [JA15
A11{J19 2 []A14
A12f]20 21 pms

MC6809

MAXIMUM RATINGS

Rating " | Symbol Value Unit This doui S .
— . v A is device contains circuitry to protect the
Supply Voltage Vec 0.3t +7.0 inputs against damage due to high static
Input Voltage Vin -031t0 +70 | V voltages or electric fields; however, it is ad-
Operating Temperature Range TetoTH vised that normal precautions be taken to
MC6809, MCE8A09, MC68809 TA Ot +70 °C avoid application of any voltage higher than
MC6809C., MC68A09C, MC68B0SC -401t0 +85 maximum rated voltages to this high im-
A T — 150 °oC pedance circuit. Reliability of operation is
Storage Temperature Range | s %o+ enhanced if unused inputs are tied to an ap-
THERMAL CHARACTERISTICS propriate logic voltage levels (e.g., either
: - Vv vee).
Characteristic Symbol Value Unit §sorvce
Thermal Resistance
Ceramic 50 o
Cerdip AL 60 /W
Plastic 100
POWER CONSIDERATIONS
The average chip-junction teriperature, T, in °C can be obtained from:
Ty=TA+(Ppedja) n

Where:
TA=Ambient Temperature, °C
0 A= Package Thermal Resistance, Junction-to-Ambient, °C/W
PD=PINT + PPORT
PINT=ICcCcx Ve, Watts — Chip Internal Power
PPORT = Port Power Dissipation, Watts — User Determined

For most applications PPQRT «P|NT and can be neglected. PPORT may become significant if the device is configured to
drive Darlington bases or sink LED loads.

An approximate relationship between Pp and T lif PpORT is neglected) is:

Pp=K=+(Tjy+273°C) (2)
Solving equations 1 and 2 for K gives:
K =Ppe(TA+273°C) + 6 aePp2 3)

Where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring Pp (at equilibrium)

for a known TA. Using this value of K the values of Pp and T j can be obtained by solving equations (1) and (2) iteratively for any
value of Ta.

ELECTRICAL CHARACTERISTICS (Vcc=5.0V 5%, Vgg=0, Tpo=T to T unless otherwise noted)

Characteristic Symbol Min Typ Max Unit
. Logic, EXTAL ViH Vgg+2.0 - Vce
Input High Voltage RESET ViR Vgs +4.0 _ Ve v
Input Low Voltage Logic, EXTAL, RESET ViL Vgg-03 | - | vgg+08] V
Input Leakage Current) .
| - - . A
(Vin=0 t0 6.25 V, Vee = max) Logic in 25 *
dc Output High Voltage
{ILoad= — 205 A, Vcc=min) _Dbo-D7 v Vgg+24 | - - v
(ILoad = ~ 145 kA, V¢ = min) AO-A15, R/W, Q, E OH | vgg+24 | - -
{Ipad= — 100 wA, Vcc=min) BA, BS Vgg+24 | - -
; dc Output Low Voitage v _ _ v 0 v
(ILoad=2.0 mA, Ve =min) oL ss+05
Internal Power Dissipation (Measured at Tp =0°C in Steady State Operation) PINT - - 1.0 w
Capacitance *
(Vin=0, TA=25°C, f=1.0 MH2) D0-D7, RESET Cin - 10 15 pF
Logic Inputs, EXTAL, XTAL - 10 15
AO-A15, R/W, BA, BS Cout - - 15 pF
Frequency of Operation MC6809 0.4 - 4
(Crystal or External Input) MC68A09 | fxTAL 04 - 6 MHz
MC68B09 0.4 - 8
Hi-Z (Off State) input Current D0-D7 TS - 2.0 10 A
(Vin=041024V, Vcc=max) AC-A15, R/W | _ _ 100 "

'Capacitances are periodically tested rather than 100% tested.

MC6809

FIGURE 1 — BUS TIMING

~ (1)
\J/
') >
—[")
R\ N
< Ja\
~——@O— ® REmm—O v
Q /
1@ —~ =@ mO,
BA, BS
<>1(18) -(——@—»{ <
Read Data X MPU Read Data E_
—_—
‘ @ Note 3
\ 4
Write Data U }_
_—F
4————y Q)
BUS TIMING CHARACTERISTICS (See Notes 1 and 2}
Ident. . MC6809 MC68A09 | MC68B09 .
Number Characteristics Symbol T Max | Min [Max | Min | Max] o™
1 Cycle Time (See Note 5) teye 1.0 | 10 {(0667] 0 | 05| 10 us
2 Pulse Width, E Low PWEL | 430 | 5000 280 | 5000 | 210 | 5000 | ns
3 Pulse Width, E High PWEgH | 450 |15500| 280 §15700| 220 | 15700 | ns
4 Clock Rise and Fall Time tr, tf - 25 - 25 - 20 ns
5 Pulse Width, Q High FWQH | 430 | 5000 | 280 | 5000 | 210 | 6000 | ns
6 Pulse Width, Q Low PWQqL | 450 115500f 280 |15700] 220 [15700 | ns
7 Delay Time, E to Q Rise tAvs 12001 250 | 130 | 165 | 80 | 125 | ns
9 Address Hold Time" (See Note 4) tAH 20| - |20 -]20)] - (ns
10 BA, BS, R/W, and Address Valid Time to,Q Rise tAQ 50 - 25 - 15 - ns
17 Read Data Setup Time tDSR 80 - 60 - 40 - ns
'8 Read Data Hold Time" HR | 0§ - |10 f - [WO] —- |ns
20 Data Delay Time from Q tDDQ — 20| — J 14| — | 110 | ns
21 Write Data Hold Time" toHw | 0 | — [0} - |30 ~ |ns
29 Usable Access Time (See Note 3) tacc |69 | — | 440} — |3BO| -~ ns
Processor Control Setup Time (MRDY, Interrupts, DMA/BREQ, _ _ _
AALT, RESET) (Figures 6, 8, 9, 10, 12, and 13) tpEs | 200 140 110 ns
Crystal Oscillator Start Time (Figures 6 and 7) tRC — | 100 - 100 | — | 100 ms
Processor Control Rise and Fall Time (Figures 6 and 8) o tpcf| — [100 - J100 | — | 100 | ns

*Address and data hold times are periodically tested rather than 100% tested.

NOTES:

1. Voltage levels shown are V| <0.4 V, Vi4=22.4 V, unless otherwise specified.
2. Measurement points shown are 0.8 V and 2.0 V, unless otherwise specified.
3. Usable accesg time is computed by: 1—4-7 max +10-17.
4. Hold time () for BA and BS is not specified.

5. Maximum teyc during MRDY or DMA/BREQ is 16 ps.

MC6809

FIGURE 2 — MC6809 EXPANDED BLOCK DIAGRAM

AO-A15
. <« Vc(C
<«——Vgg
/16
P A
- PC <> Instruction
Register
U >
[
L S l__——
Y - Y) l
Interrupt | <— FIRQ
Control }«——1RQ
g X A
A DMA/BREQ
4————0{ D R/W
B > \A
l—— HALT
< oP cc Bus "
Control }—3»BA
] A L—5ss
XTAL
Y \ &
l€——EXTAL
ALU o Timing
}&—— MRDY
» I——->E
Internal Three-State Control L ——>»Q

FIGURE 3 — BUS TIMING TEST LOAD

Test Point

C = 30 pF for BA, BS

130 pF for DO-D7, E,
90 pF for AO-A15, R/

a
W

50V

mmpeiso S fiL = 22X

or Equiv.

MMD7000
or Equiv.

R = 11.7 k@ for DO-D7

16.5 kQ for AO-A15, E, Q, R/W

24 kQ for BA, BS

PROGRAMMING MODEL
As shown in Figure 4, the MCE809 adds three registers to
the set available in the MCB800. The added registers include
a direct page register, the user stack pointer, and a second
index register.

ACCUMULATORS (A, B, D)

The A and B registers are general purpose accumulators
which are used for arithmetic calculations and manipulation
of data.

Certain instructions concatenate the A and B registers to
form a single 16-bit accumulator. This is referred to as the D
register, and is formed with the A register as the most signifi-
cant byte.

DIRECT PAGE REGISTER (DP)

The direct page register of the MC6809 serves to enhance
the direct addressing mode. The content of this register ap-
pears at the higher address outputs (A8-A15) during direct
addressing instruction execution. This allows the direct
mode to be used at any place in memory, under program
control. To ensure M6800 compatibility, all bits of this
register are cleared during processor reset.

MC6809

FIGURE 4 — PROGRAMMING MODEL OF THE MICROPROCESSING UNIT

15

X — Index Register

Y — Index Register

U — User Stack Pointer

Pointer Registers

S — Hardware Stack Pointer

Program Counter

Accumulators

>
U('_“g
(o2}

DP

0
I Direct Page Register

1

0
E [F l Hl | I N l z [\Y C] CC — Condition Code Register

INDEX REGISTERS (X, Y)

The index registers are used in indexed mode of address-
ing. The 16-bit address in this register takes part in the
calculation of effective addresses. This address may be used
to point to data directly or may be modified by an optional
constant or register offset. During some indexed modes, the
contents of the index register are incremented or decrement-
ed to point to the next item of tabular type data. All four
pointer registers (X, Y, U, S) may be used as index registers.

STACK POINTER (U,S)

The hardware stack pointer (S) is used automatically by
the processor during subroutine calls and interrupts. The
stack pointers of the MC6809 point to the top of the stack, in
contrast to the MC6800 stack pointer, which pointed to the
next free location on the stack. The user stack pointer (U) is
controlled exclusively by the programmer. This allows
arguments to be passed to and from subroutines with ease.
Both stack pointers have the same indexed mode addressing
capabilities as the X and Y registers, but also support Push
and Pull instructions. This allows the MC6809 to be used effi-
ciently as a stack processor, greatly enhancing its ability to
support higher level languages and modular programming.

PROGRAM COUNTER

The program counter is used by the processor to point to
the address of the next instruction to be executed by the pro-
cessor. Relative addressing is provided allowing the program
counter to be used like an index register in some situations.

CONDITION CODE REGISTER

The condition code register defines the state of the pro-
cessor at any given time. See Figure 5.

FIGURE 5 — CONDITION CODE REGISTER FORMAT

IRONNBENG
L camry

b————— Overflow
Zero
Negative
IRQ Mask
Half Carry
FIRQ Mask
Entire Flag

CONDITION CODE REGISTER
DESCRIPTION
BIT 0 (C)

Bit O is the carry flag, and is usually the carry from the
binary ALU. C is also used to represent a ‘borrow’ from
subtract-like instructions (CMP, NEG, SUB, SBC) and is the
complement of the carry from the binary ALU.

BIT 1 (V)

Bit 1 is the overflow flag, and is set to a one by an opera-
tion which causes a signed twos complement arithmetic
overflow. This overflow is detected in an operation in which
the carry from the MSB in the ALU does not match the carry
from the MSB-1.

BIT 2 (2)

Bit 2 is the zero flag, and is set to a one if the result of the
previous operation was identically zero.

MC6809

BIT 3 (N)

Bit 3 is the negative flag, which contains exactly the value
of the MSB of the result of the preceding operation. Thus, a
negative twos-complement result will leave N set to a one.

BIT 4 (i)

Bit 4 is the IRQ mask bit. The processor will not recognize
interrupts from the iRQ line if this bit is set to a one. NMI,
FIRQ, IRQ, RESET, and SWI all set | to a one. SWI2 and
SWI3 do not affect |.

BIT 5 (H)

Bit 5 is the half-carry bit, and is used to indicate a carry
from bit 3 in the ALU as a result of an 8-bit addition only
(ADC or ADD). This bit is used by the DAA instruction to
perform a BCD decimal add adjust operation. The state of
this flag is undefined in all subtract-like instructichs.

BIT 6 (F)

Bit 6 is the FIRQ mask bit. The processor will not
recognize interrupts from the FIRQ line if this bit is a one.
NMI, FIRQ, SWI, and RESET all set F to a one. TRQ, SWI2,
and SWI3 do not affect F.

BIT 7 (E}

Bit 7 is the entire flag, and when set to a one indicates that
the complete machine state (all the registers) was stacked,
as opposed to the subset state (PC and CC). The E bit of the
stacked CC is used on a return from interrupt (RTl) to deter-
mine the extent of the unstacking. Therefore, the current E
left in the condition code register represents past action.

PIN DESCRIPTIONS

POWER (Vss, Vce)

Two pins are used to supply power to the part: VSS is
ground or O volts, while Vccis +5.0V +56%.

ADDRESS BUS (A0-A15)

Sixteen pins are used to output address information from
the MPU onto the address bus. When the processor does
not require the bus for a data transfer, it will output address
FFFF16, R/W = 1, and BS = 0; thisis a ""dummy access” or
VMBA cycle. Addresses are valid on the rising edge of Q. All
address bus drivers are made high impedance when output
bus available (BA) is high. Each pin will drive one Schottky
TTL load or four LSTTL loads, and 90 pF.

DATA BUS (D0-D7)

These eight pins provide communication with the system
bidirectional data bus. £ach pin will drive one Schottky TTL
load or four LSTTL loads, and 130 pF.

READ/WRITE (R/W)

This signal indicates the direction of data transfer on the
data bus. A low indicates that the MPU is writing data onto
the data bus. R/W is made high impedance when BA is
high. R/W is valid on the rising edge of Q.

RESET

A low level on this Schmitt-trigger input for greater than
one bus cycle will reset the MPU, as shown in Figure 6. The
reset vectors are fetched from locations FFFE1g and FFFF1g
(Table 1) when interrupt acknowledge is true, (BA®BS =1).
During initial power on, the RESET line should be held low
until the clock oscillator is fully operational. See Figure 7.

Because the MCB68G3 RESET pin has a Schmitt-trigger in-
put with a threshold voltage higher than that of standard
peripherals, a simple R/C network may be used to reset the
entire system. This higher threshold voltage ensures that alf
peripherals are out of the reset state before the processor.

HALT

A low level on this input pin will cause the MPU to stop
running at the end of the present instruction and remain
haited indefinitely without loss of data. When halted, the BA
output is driven high indicating the buses are high im-
pedance. BS is also high which indicates the processor is in
the halt or bus grant state. While halted, the MPU will not
respond to external real-time requests (FIRQ, IRQ) although
DMA/BREQ will always be accepted, and NMT or RESET will
be latched for later response. During the halt state, Q and E
continue to run normally. If the MPU is not running (RESET,
DMA/BREQ), a halted state (BA®BS = 1) can be achieved by
pulling HALT low while RESET is still low. If DMA/BREQ
and HALT are both pulled low, the processor will reach the
last cycle of the instruction (by reverse cycle stealing) where
the machine will the become halted. See Figure 8.

BUS AVAILABLE, BUS STATUS (BA, BS)

The bus available output is an indication of an internal
control signal which makes the MOS buses of the MPU high
impedance. This signal does not imply that the bus will be
available for more than one cycle. When BA goes low, a
dead cycle will elapse before the MPU acquires the bus.

The bus status output signal, when decoded with BA,
represents the MPU state (valid with leading edge of Q).

MPU State MPU State Definition
BA BS
0 0 Normai {Running)
0 1 Interrupt or Reset Acknowledge
|1 0 Sync Acknowiedge
1 1 Halt or Bus Grant Acknowledge

MC6809

"Yo13) JOI98A 3Y) Aq
Pamoyjoj seadde |jim $319A2 3444 810W 331y} ‘Bull 1 ISIH SYI JO UOIISURI] BANDE Byl BuImo||04 "Bwn mO| | 3S3Y Buunp snq ay) uo sieadde 3444 €
"palou asIMIBYI0 Ssajun “SHoA (' J0 36eljon ybBiy e pue sijoa g'Q o abeljoa moj e WOl pue O} PadUaIa)e! B1e Sluawalnseaw Buiwi) 7
"UMOYS UBY) JBUO0OS 8[0AD BUO | JSIY JO 1N SWOD |IIM G JO 4/ AQ paxiyaid sapod alep Yum sied |

‘S310N

N/ ¥ N/ AMANNAAVANNRNNRNNGE
uononsu| a1Ag 01 # uononJisy| 81Ag mo EMVEM AL
1S4 Jd MeN 1814 Jd MaN sng
XXX XXX XC X XTXTX) @D\ \NNNUANNN S
VWA alAg 1H VWA g'H
DN — 2d MaN XXX 0d MaN AT M/

JOdMaN dd434 4444

JdMSN 4444 dJ444- 334344 3444 3444 3444 3444

XX XXX

1 +3d maN

EoioN 855 XX XX X X XX T XX T X OO S ssoppy

L +2d M8N
1Ddy QEIIY

mu&V_ e $ode) $9d;

ég 3
S I Y e e U e Y e Y e e T Y Y Y Y Y T T o Y s

HE— PP DD DD w P PP — D —- U |

Py

Ol+W f+W G+W /+W Qg+W G+W H+W C4+W Z4+W | +W g+uU [/+U g+U G+U p+u g+U 7Z+U | +u C.EUU)\ UU>

r

ONIWIL L3S34 — 9 3HNOH

MC6809

FIGURE 7 — CRYSTAL CONNECTIONS AND OSCILLATOR START UP

)]
vee 7‘ vee min <<

) ViHR
< it

l«——— tRC——>

NOTE: Waveform measurements for all inputs and outputs are specified at logic high 2.0 V and logic low 0.8 V unless otherwise specified.

MC6809

38 Y1 39
Y1 Cin Cout
8MHz | 18pF | 18pF '_'IDI—_‘
6 MHz 20 pF 20 pF
4 MHz 24 pF 24 pF C, = e
n 1 I out

&
A 4

38 1 L Nominal Crystal Parameters
1 Dl » 358MHz | 400MHz | 6.0MH: 8.0 MHz
Rg 60 0 50 2 30-50 O 20-40 Q
L1 Cco 3.5 pF 6.5 pF 4-6 pF 4-6 pF
38 C1 Rs 39 c1 0.015 pF 0.025 pF 0.01-0.02 pF 0.01-0.02 pF
Q >40k >30k >20k >20k
{€ All parameters are 10%
co NOTE: These are representative AT-cut crystal parameters only. Crystals of other

types of cut may also be used.
1]

Typical PC Board Layout

"‘ R *])
7 (/// Ge/o, |
//// T

CL Crystal

@)
%

Other Signals
Not Wired In
This Area.

MC6809

FIGURE 8 — HALT AND SINGLE INSTRUCTION
EXECUTION FOR SYSTEM DEBUG

2nd To Last
Last Cycle
Cycle Of Of
Current Current Dead

Dead Inst Instruction Dead

l Inst. ' Inst. ' Cvclel Halted 'Cycle IEetch Execute; Cycle) Halted

t Pes t;’::CS "_ tpCf
PCft r
HALT . VILZIVIH
A ' T ' > letpcs
ress \
e A X X 45
Fetch Execute
XXX ——tt
C
< -
BS / \ /
D \
o X D—

Instruction
Opcode

NOTE: Waveform measurements for all inputs and outputs are specified at logic high 2.0 V and logic low 0.8 V unless otherwise specified.

INTERRUPT ACKNOWLEDGE is indicated during both
cycles of a hardware-vector-fetch (RESET, NMI, FIRQ, TRQ,
SWI, SWI2, SWI3). This signal, plus decoding of the lower

four address lines, can provide the user with an indication of -

which interrupt level is being serviced and allow vectoring by
device. See Table 1.

SYNC ACKNOWLEDGE is indicated while the MPU is
waiting for external synchronization on an interrupt line.

HALT/BUS GRANT is true when the MC6809 is in a hait
or bus grant condition.

TABLE 1 — MEMORY MAP FOR INTERRUPT VECTORS

Memory Map For
Vector Locations Interrupt Vector
Description

MS LS
FFFE FFFF RESET
FFFC FFFD NMI
FFFA FFFB SwWi
FFF8 FFF9 iRQ
FFF6 FFF7 FIRQ
FFF4 FFF5 SWI2
FFF2 FFF3 Swi3
FFFO FFF1 Reserved

NON MASKABLE INTERRUPT (NMI)*

A negative transition on this input requests that a non-
maskable interrupt sequence be generated. A non-maskable

interrupt cannot be inhibited by the program, and also has a
higher priority than FIRQ, IRQ, or software interrupts. Dur-
ing recognition of an NMI, the entire machine state is saved
on the hardware stack. After reset, an NMi will not be recog-
nized until the first program load of the hardware stack
pointer (S). The pulse width of NMi low must be at least one
E cycle. If the NMI input does not meet the minimum set up
with respect to Q, the interrupt will not be recognized until
the next cycle. See Figure 8.

FAST-INTERRUPT REQUEST (FIRQ)*

A low level on this input pin will initiate a fast interrupt se-
quence, provided its mask bit (F) in the CC is clear. This se-
quence has priority over the standard interrupt request
(IRQ), and is fast in the sense that it stacks only the contents
of the condition code register and the program counter. The
interrupt service routine should clear the source of the inter-
rupt before doing an RTI. See Figure 10.

INTERRUPT REQUEST (IRQ) *

A low level input on this pin will initiate an interrupt re-
quest sequence provided the mask bit (l) in the CC is clear.
Since IRQ stacks the entire machine state it provides a
slower response to_interrupts than FIRQ. [RQ also has a
lower priority than FIRQ. Again, the interrupt service routine
should clear the source of the interrupt before doing an RTI.
See Figure 9.

*NMi, FIRQ, and TRQ requests are sampled on the falling edge of Q. One cycle is required for synchronization before these interrupts are recog-
nized. The pending interrupt(s) will not be serviced until completion of the current instruction unless a SYNC or CWAI condition is present. |f IRQ
and FIRQ do not remain low until compietion of the current instruction they may not be recognized. However, NMi is latched and need only re-
main low for one cycle. No interrupts are recognized or latched between the falling edge of RESET and the rising edge of BS indicating

RESET acknowledge.

MC6809

"AJUO 82U313481 10} UMOYS XD0J0 3 .
‘paiyioads 8sIMIBLIO SSBjUN A g'0 =Mm0| 0160) pue A 0'z =ybiy 2160} 1e payioads ale sindino pue sindui ||e 10) SIUBWSINSEAUS WIOBAEAA 31 ON

S 1 T e s e e e I I P
| | A x x S8
’ X X X_ve
/ \ D D WY
10d HOd

YWA MaN MmN YWA HID VOOV 8J00v dd HXI Xl HAl JAI. HSN 1SN HJ3d 134 VYWA

S G G G G G GH GHD G GHD SR GHD GID G G G SN G GED G GED SIS en
(QHl) (oY1) \ x_wﬁz
i+2d Od mﬂﬁ. .__zm_ S&L ﬁw ol
MON MON 4444 0334 J394 4444 ZL—dSLL—dSOL—dS6—dS 8-dS L—dS 9-dS S—~dS v—dS £-dS Z—-dS L—dS 3444 2d Od sng
X X X X) D G ¢ X X XX X X X X XX X X X)G & ssaippy

éo

g Y Y T T T T T Y Y Y Y T 1 O I O O e

[i+u] u [si+w|a+w|gi+wigi+w|p+wgl+w|zi+wfii+wlol+w|p+w|g+w |s+w [grw | grw | p+w |g+w [zrw | 1+w| w |[|-w|z-w]|
I s aouanbag yola4 10108 pue Buiyoels 1dnusiu >lac—>|
Y0194 uonoNIsu|
uononusu wauny 4o
BJ0A 1587

ONIWIL LdNYYILNI IWN ONV DYI — 6 3HNOI4

MC6809

AjUO 80UBIBJBI JO} UMOYS OO0 I
"Palj10ads asImIaylo ssajlun A g0 =mo) 2160] pue A 0'Z =By 2160] 1e paiyoads ae sindino pue sidu) (|8 10} SluBWAINSEaW ::obw>m>> ‘310N

S S B O N O B O

\ /

YA TOdMON HOdMON YINA HDD HOd 10d YWA
X X X X X X X X e

A X A A X
-

H_X,fum;mzxgamzx &&wxmtuwx&&wxuu&mx\mmw* -dS %Tamxm&ux 2d x 2d x x_ mmww%?
LML L L L L Ll o

S D B
[U Y B

L

wo | osu | ogrw | ogrw | ozew | ogrw | grw | oprw | ogrw | ozew | oprw |ow | pw | ozew |
e bl et p. |
—‘ gl Lo B ‘_
yola4 aousnbag yo1a4 10108/ pue Bunoelg 1dnuBIY| uoHINAISU|
uonoNIIsu| 1uann) Jo
310A) 15€7

ONIWIL 1dNYHILNI DHI3 — 01 34NOI4

MC6809

XTAL, EXTAL

These inputs are used to connect the on-chip oscillator to
an external parallel-resonant crystal. Alternately, the pin
EXTAL may be used as a TTL level input for external timing
by grounding XTAL. The crystal or external frequency is four
times the bus frequency. See Figure 7. Proper RF layout
techniques should be observed in the layout of printed circuit
boards.

E Q

E is similar to the MC6800 bus timing signal phase 2; Qis a
quadrature clock signal which leads E. Q has no parrallel on
the MC6800. Addresses from the MPU will be valid with the
leading edge of Q. Data is latched on the falling edge of E.
Timing for E and Q is shown in Figure 11.

MRDY*

This input control signal allows stretching of E and Q to
extend data-access time. E and Q operate normally while
MRDY is high. When MRDY is low, E and Q may be stretch-
ed in integral multiples of quarter (%) bus cycles, thus allow-
ing interface to slow memories, as shown in Figure 12(a).
During non-valid memory access (VMA cycles), MRDY has
no effect on stretching E and Q; this inhibits slowing the pro-
cessor during 'don’t care’’ bus accesses. MRDY may also be
used to stretch clocks (for slow memory) when bus control
has been transferred to an external device (through the use
of HALT and DMA/BREQ).

NOTE

Four of the early production mask sets (G7F, T5A,
P6F, T6M) require synchronization of the MRDY input
with the 4f clock. The synchronization necessitates an
external oscillator as shown in Figure 12(b). The
negative transition of the MRDY signal, normally
derived from the chip select decoding, must meet the
tpcs timing. With these four mask sets, MRDY’s
positive transition must occur with the rising edge of
4f.

In addition, on these same mask sets, MRDY will
not stretch the E and Q signals if the machine is ex-
ecuting either a TFR or EXG instruction during the
HATT high-to-low transition. If the MPU executes a
CWAI instruction, the machine pushes the internal

registers onto the stack and then awaits an interrupt.
During this waiting period, it is possible to place the
MPU into a hait mode to three-state the machine, but
MRDY will not stretch the clocks.

The mask set for a particular part may be determined by
examining the markings on top of the part. Below the part
number is a string of characters. The first two characters are
the last two characters of the mask set code. If there are only
four digits the part is the G7F mask set. The last four digits,
the date code, show when the part was manufactured.
These four digits represent year and week. For example a

ceramic part marked:

MCE808L

 SSa— 5A8012

is a TBA mask set made the twelfth week of 1980.

DMA7BREQ"

The DMA/BREQ input provides a method of suspending
execution and acquiring the MPU bus for another use, as
shown in Figure 13. Typical uses include DMA and dynamic
memory refresh.

A low level on this pin will stop instruction execution at the
end of the current cycle unless pre-empted by self-refresh.
The MPU will acknowledge DMA7BREQ by setting BA and
BS to a one. The requesting device will now have up to 15
bus cycles before the MPU retrieves the bus for self-refresh.
Self-refresh requires one bus cycle with a leading and trailing
dead cycle. See Figure 14. The self-refresh counter is only
cleared if DMA/BREQ is inactive for two or more MPU
cycles.

Typically, the DMA controller will request to use the bus
by asserting DMA/BREQ pin low on the leading edge of E.
When the MPU replies by setting BA and BS to a one, that
cycle will be a dead cycle used to transfer bus mastership to
the DMA controller.

False memory accesses may be prevented during any dead
cycles by developing a system DMAVMA signal which is
LOW in any cycle when BA has changed.

FIGURE 11 — E/Q RELATIONSHIP

Start of Cycle
1

End of Cycle (Latch Data)

|
J&«—1avs

N

|
' Address Valid

NOTE: Waveform measurements for alt inputs and outputs are specified at logic high 2.0 V and logic low 0.8 V unless otherwise specified.

* The on-board clock generator furnishes E and Q to both the system and the MPU. When MRDY is pulled iow, both the system clocks and the
internal MPU clocks are stretched. Assertion of DMA/BREQ input stops the internal MPU clocks while allowing the external system clocks to
RUN {i.e., release the bus to a DMA controller). The internal MPU clocks resume operation after DMA/BREQ is released or after 16 bus cycles
{14 DMA, two dead), whichever occurs first. While DMA/BREQ is asserted it is sometimes necessary to pull MRDY low to allow DMA
to/ from slow memory/peripherals. As both MRDY and DMA/BREQ control the internal MPU clocks, care must be exercised not to violate
the maximum teyc specification for MRDY or DMA/BREQ. (Maximum teyc during MRDY or DMA/BREQ is 16 us.)

MC6809

When BA goes low (either as a result of DMA/BREQ =
HIGH or MPU self-refresh), the DMA device should be taken
off the bus. Another dead cycle will elapse before the MPU
accesses memory to allow transfer of bus mastership
without contention.

MPU OPERATION

During normal operation, the MPU fetches an instruction
from memory and then executes the requested function.

This sequence begins after RESET and is repeated indefinite-
ly unless altered by a special instruction or hardware occur-
rence. Software instructions that alter normal MPU opera-
tion are: SWI, SWI2, SWI3, CWAI, RTI, and SYNC. An in-
terrupt, HALT, or DMA/BREQ can also alter the normal ex-
ecution of instructions. Figure 15 illustrates the flowchart for
the MC6809.

FIGURE 12 — MRDY TIMING AND SYNCHRONIZATION

(a) Timing

1 b))
[2 A S A
E
|_ - ———
o/ N/ L » /
| cC
<——>I—tPcs
MRDY \
NN 5y /
| C
v E
|
/ (b} Synchronization
4.0 MHz 5 6
Oscillator
XTAC139 74L504
NN 1
z/»KJ%L(?,,k‘- g
EXTAL|38

Part of

MC6809 pppy MRDY Stretch

Active Low

Chip Select
for Slow

Memory or (

Peripheral }-

CLR
@ 9= mRoy
% Synchronization
7474
D b——
+5 PR
Y
1k
L AA
14
R Values
4 11
A2 RIC Chosen
74121 as Req'd
afa1 c
™ 10
C
5 -
_2|B a

I

MRDY Stretch
Stretch = 0.7 RC

To Memory

MC6809

DMA/BREQ ; ; : : \

FIGURE 13 — TYPICAL DMA TIMING (<14 CYCLES}

l«——— Dead J: DMA

/T S L

Dead

MPU

/NS

/111

—> [€—tpCs —>» |je=1PCS
|
BA, BS > 1 —1AQ ‘\
—
DMAVMA / \ / \
/ \
ADDR
(MPU)
ADDR / \
(DMAC) \ /
FIGURE 14 — AUTO-REFRESH DMA TIMING (> 14 CYCLES)
(REVERSE CYCLE STEALING)
14 DMA Cycles ADeadIMPU!Dead‘q——DMA—-—)
| | |

|
DMA/BREQ \4

BA, BS V
svavma® _ Y\

* DMAVMA is a signal which is developed externally, but is a system requirement for DMA. Refer to Application Note AN-820.

:

L, [Ny RN E—

NOTE: Waveform measurements for all inputs and outputs are specified at logic high 2.0 V and logic low 0.8 V unless otherwise specified.

MC6809

“14eyoMOYy 9yl Ul 1ulod Aue woly 8ouanbas 1asal ay) Buusiue ui ynsal |Im [3S3Y Builiessy 810N @

S8 "v@ S0y

L+

Buissed0id
e
ANDFt—
NJ3
A
Grovnd>
N
N

voe—l
S|

S8 'v@ saeg

95ueNnbeg
Q38YWO

l 1 | 3bpamouoy tuery sng 10 yjeH
0 1 abpajmoundy dUAg
l 0 |eBpamounoy 18say J0 1dnualul
0 0 Buuuny
S8 | v8 ejelg sng

%007 INN 4D

ONAS

Sge—0

Sge—|

ve-—i|

4°0814

>
O

SNOILONYLSNI 60890 HO4 LHVYHOMOT4 — St 3HNOIS

INN uueng
.mlu_oo._
IAN 1D
| 'de—|
M/l
Yd0e—0

Jouanbag
JELEL]

MC6809

ADDRESSING MODES

The basic instructions of any computer are greatly enhanc-
ed by the presence of powerful addressing modes. The
MC6809 has the most complete set of addressing modes
available on any microcomputer today. For example, the
MC6809 has 59 basic instructions; however, it recognizes
1464 different variations of instructions and addressing
modes. The addressing modes support modern program-
ming techniques. The following addressing modes are avail-
able on the MC6809:

Inherent (includes accumulator)

immediate

Extended

Extended Indirect

Direct

Register

Indexed

Zero-Offset
Constant Offset
Accumulator Offset
Auto Increment/Decrement
Indexed Indirect
Relative
Short/Long Relative Branching
Program Counter Relative Addressing

INHERENT (INCLUDES ACCUMULATOR)

In this addressing mode, the opcode of the instruction
contains all the address information necessary. Examples of
inherent addressing are: ABX, DAA, SWI, ASRA, and
CLRB.

IMMEDIATE ADDRESSING

In immediate addressing, the effective address of the data
is the location immediately following the opcode li.e., the
data to be used in the instruction immediately following the
opcode of the instruction). The MC6809 uses both 8- and
16-bit immediate values depending on the size of argument
specified by the opcode. Examples of instructions with im-
mediate addressing are:

LDA #$20
LDX #$F000
LDY #CAT
NOTE

signifies Immediate addressing; $ signifies hexa-

decimal value.

EXTENDED ADDRESSING

in extended addressing, the contents of the two bytes im-
mediately following the opcode fully specify the 16-bit effec-
tive address used by the instruction. Note that the address
generated by an extended instruction defines an absolute
address and is not position independent. Examples of ex-
tended addressing include:

LDA CAT
STX MOUSE
LDD $2000

EXTENDED INDIRECT — As in the special case of indexed
addressing (discussed below), one level of indirection may
be added to extended addressing. In extended indirect, the
two bytes following the postbyte of an indexed instruction
contain the address of the data.

LDA [CAT]
LDX [$FFFE]
STU [DOG]

DIRECT ADDRESSING

Direct addressing is similar to extended addressing except
that only one byte of address follows the opcode. This byte
specifies the lower eight bits of the address to be used. The
upper eight bits of the address are supplied by the direct
page register. Since only one byte of address is required in
direct addressing, this mode requires less memory and
executes faster than extended addressing. Of course, only
256 locations (one page!} can be accessed without redefining
the contents of the DP register. Since the DP register is set
to $00 on reset, direct addressing on the MC6809 is compati-
ble with direct addressing on the M6800. Indirection is not
allowed in direct addressing. Some examples of direct
addressing are:

LDA $30
SETDP $10 (assembler directive)
LDB $1030

LDD < CAT

NOTE
< is an assembler directive which forces direct
addressing.

REGISTER ADDRESSING

Some opcodes are followed by a byte that defines a
register or set of registers to be used by the instruction. This
is called a postbyte. Some examples of register addressing
are:

TFR X, Y Transfers X into Y

EXG A B Exchanges A with B

PSHS A, B, X,Y PushY, X, Band Aonto S
PULU X,Y,D Pull D, X, and Y from U

INDEXED ADDRESSING

In all indexed addressing, one of the pointer registers (X,
Y, U, S, and sometimes PC) is used in a calculation of the ef-
fective address of the operand to be used by the instruction.
Five basic types of indexing are available and are discussed
below. The postbyte of an indexed instruction specifies the
basic type and variation of the addressing mode as well as
the pointer register to be used. Figure 16 lists the legal for-
mats for the postbyte. Table 2 gives the assembler form and
the number of cycles and bytes added to the basic values for
indexed addressing for each variation.

MC6809

FIGURE 16 — INDEXED ADDRESSING POSTBYTE

ZERO-OFFSET INDEXED — In this mode, the selected

REGISTER BIT ASSIGNMENTS pointer register contains the effective address of the data to
Postbyte Register Bit indexed be used by the inlwstruction. This is the fastest indexing mode.
ST eTs5T a1 31217 % Addressing Examples are:
Mode LDD 0,X
0 R R | d d d d d | EA = ,R + 5 Bit Offset LtDA S
1 R| R 0j0joO0Ojo]oO R+
1{R|{R]iJ]O]JoOo]oO]n R+ + CONSTANT OFFSET INDEXED — In this mode, a twos-
11rR{R]Olo0olol1]o0 —-R complement offset and the contents of one of the pointer
1T RIR i ol ol 1 __R registers are added to form the effective address of the
11RIRI iloli1]lo0]o EA = R +0 Offset operand. T_he pointer register’s initial content is unchanged
1] R|R| 1] 0] 1]0] 1 |EA=.R+ ACCB Offset by the addition. ,
TTRIRT K 1170 [€A = R + ACCA Offset Three §|zes of offsets are available:
"I RIR| 1] 1] 0] 0] 0] EA = .R +8 Bit Offset g g:: :‘ 15258“30":?’27)
1 R R i 1 0 0 1 | EA = ,R +16 Bit Offset 16 bit (= 32768 to + 32767)
1 R R i 1 0 1 1 EA = ,R + D Offset . o .
T 1T <1 TT 7 101 0 EA = .PC +8 Brt Offset The twos complemgnt 5-bit offsgt 1S c.nciuded in the post-
Y I R T 77 o 7 [EA = PC +16 Bt Offeet byte and, therefore, is most efflc'lent in use of bytes gnd
T rTRT P R e EA = L Address] cycles. The twos ~complement 8-bit offset is contained in a
A — : single byte following the postbyte. The twos complement
)) 16-bit offset is in the two bytes following the postbyte. in
L Adaressing Mode Fieid most cases the programmer xeed not be cgoncen?ed w\i{th the
indirect Field size of this offset since the assembler will select the optimal
{Sign bit when by = 0) size automatically.
Examples of constant-offset indexing are:
LDA 23,X
Register Field: RR LDX -2,8
x = Don't Care g? _ 5 LDY 300,X
d = Offset Bit 0= U LDU CATY
= 0= Not Indirect: M=S5
1=indirect
TABLE 2 — INDEXED ADDRESSING MODE
Non indirect Indirect
Type Forms Assembler Postbyte +1+ Assembler Postbyte + |+
Form Opcode ~| ¢ Form Opcode ~|¢
Constant Offset From R No Offset R 1RR00100 010 [.R] 1RR10100 3
{2s Complement Offsets) 5-Bit Offset n, R ORRnnnnn 110 defaults to 8-bit
8-Bit Offset n, R 1RR01000 1 [n, R] 1RR11000 411
16-Bit Offset n, R 1RR01001 412 (n, R] 1RR11001 712
Accumulator Offset From R A Register Offset A, R 1RR00110 110 {A, R} 1RR10110 410
(2s Complement Offsets) B Register Offset B, R 1RR00101 | 1]0 (B, R] 1RR10101 | 4]0
D Register Offset D, R 1RRO1011 410 [D, R] 1RR11011 710
Auto Increment/Decrement R Increment By 1 R+ 1RRO0000 2{0 . not allowed
Increment By 2 LR+ + 1RR00001 3]0 LR+ +]] 1RR10001 610
Decrement By 1 ,—R 1RR0O0010 210 not aliowed
Decrement By 2 ,——R 1RRO0011 310 [,— —R] 1RR10011 610
Constant Offset From PC 8-Bit Offset n, PCR 1xx01100 111 {n, PCR] 1xx11100 411
(2s Complement Offsets) 16-Bit Offset n, PCR 1xx01101 | 512 | (n, PCRI 1xx11101 | 8]2
Extended Indirect 16-Bit Address — — |- [{n] 10011111 512
R=X,Y, U, orS RR:
x = Don't Care 00=X
1=Y
=U
S
:and +' indicate the number of additional cycles and bytes for the particular variation.

MC6809

ACCUMULATOR-OFFSET INDEXED — This mode is
similar to constant offset indexed except that the twos-
complement value in one of the accumulators (A, B, or D)
and the contents of one of the pointer registers are added to
form the effective address of the operand. The contents of
both the accumulator and the pointer register are unchanged
by the addition. The postbyte specifies which accumulator
to use as an offset and no additional bytes are required. The
advantage of an accumulator offset is that the value of the
offset can be calculated by a program at run-time.

Some examples are:

LDA B.Y
LDX DY
LEAX B,X

AUTO INCREMENT/DECREMENT INDEXED — In the
auto increment addressing mode, the pointer register con-
tains the address of the operand. Then, after the pointer
register is used it is incremented by one or two. This address-
ing mode is useful in stepping through tables, moving data,
or for the creation of software stacks. In auto decrement, the
pointer register is decremented prior to use as the address of
the data. The use of auto decrement is similar to that of auto
increment; but the tables, etc., are scanned from the high to
low addresses. The size of the increment/ decrement can be
either one or two to allow for tables of either 8- or 16-bit data
to be accessed and is selectable by the programmer. The
pre-decrement, post-increment nature of these modes
allows them to be used to create additional software stacks
that behave identically to the U and S stacks.

Some examples of the auto increment/decrement ad-
dressing modes are:

LDA X+
STD Y+ +
LDB =Y
LDX ,— =S

Care should be taken in performing operations on 16-bit
pointer registers (X, Y, U, S) where the same register is used
to calculate the effective address.

Consider the following instruction:

STX 0,X+ + (X initialized to 0)
The desired result is to store zero in locations $0000 and
$0001 then increment X to point to $0002. in reality, the
following occurs:

0--temp calculate the EA; temp is a holding register
X+2-+X perform auto increment
X—{temp) do store operation

INDEXED INDIRECT — All of the indexing modes, with
the exception of auto increment/decrement by one or a
+ 4-bit offset, may have an additional ievel of indirection
specified. In indirect addressing, the effective address is con-
tained at the location specified by the contents of the index
register plus any offset. In the example below, the A ac-
cumulator is loaded indirectly using an effective address
calculated from the index register and an offset.

Before Execution
A= XX (don’t care)

X = $F000
$0100 LDA [$10,X] EA is now $F010
$FO10 $F1 $F150 is now the
$FO11 $50 new EA
$F150 SAA

After Execution
A=$AA Actual Data Loaded
X=$F000

All modes of indexed indirect are included except those
which are meaningless (e.g., auto increment/decrement by
one indirect). Some examples of indexed indirect are:

LDA [.X]
LDD (10,S]
LDA [B,Y]

LDOD X+ +]

RELATIVE ADDRESSING

The byte(s) following the branch opcode is (are) treated as
a signed offset which may be added to the program counter.
If the branch condition is true, then the calculated address
(PC + signed offset) is loaded into the program counter.
Program execution continues at the new location as in-
dicated by the PC; short (one byte offset) and long (two
bytes offset) relative addressing modes are available. All of
memory can be reached in long relative addressing as an ef-
fective address is interpreted modulo 216. Some examples of
relative addressing are:

BEQ CAT, (short)
BGT DOG (short}
CAT LBEQ RAT (long)
DOG LBGT RABBIT (long}
L]
®
L]
RAT NOP

RABBIT NOP

PROGRAM COUNTER RELATIVE — The PC can be used
as the pointer register with 8- or 16-bit signed offsets. As in
relative addressing, the offset is added to the current PC to
create the effective address. The effective address is then
used as the address of the operand or data. Program counter
relative addressing is used for writing position independent
programs. Tables related to a particular routine will maintain
the same relationship after the routine is moved, if
referenced relative to the program counter. Examples are:

LDA CAT, PCR
LEAX. TABLE, PCR

Since program counter relative is a type of indexing, an

additional level of indirection is available.
LDA [CAT, PCR]
LDU {DOG, PCR]

MC6809

INSTRUCTION SET

The instruction set of the MC6803E is similar to that of the
MC6800 and is upward compatible at the source code level.
The number of opcodes has been reduced from 72 to 59, but
because of the expanded architecture and additional ad-
dressing modes, the number of available opcodes (with dif-
ferent addressing modes) has risen from 197 to 1464.

Some of the new instructions are described in detail
below.

PSHU/PSHS

The push instructions have the capability of pushing onto
either the hardware stack (S) or user stack (U) any single
register or set of registers with a single instruction.

PULU/PULS

The pull instructions have the same capability of the push
instruction, in reverse order. The byte immediately following
the push or puill opcode determines which register or
registers are to be pushed or pulled. The actual push/pull se-
quence is fixed; each bit defines a unique register to push or
pull, as shown below.

Push/Pull Postbyte Stacking Order
EEEEEEEE
C_____ccr cc
A A
B
B
DPR oP
X X Hi
Y X Lq
S/u Y Hi
PC Y Lo
U/S Hi
U/S Lo
PC Hi
PC Lo
Push Order
Increasing
Memory
TFR/EXG

Within the MCB803E, any register may be transferred to or
exchanged with another of like size, i.e., 8 bit to 8 bit or 16
bit to 16 bit. Bits 4-7 of postbye define the source register,
while bits 0-3 represent the destination register. These are
denoted as follows:

Transfer/Exchange Postbyte
rTSou:rce: l D:esnrfnano:n J
Register Field

0000=D (A:B) 1000= A
0001=X 1001=8
0010=Y 1010=CCR
0011=U 1011=DPR
0100=S
0101=PC
NOTE
All other combinations are undefined and INVALID.
LEAX/LEAY/LEAU/LEAS

The LEA (load effective address) works by calculating the
effective address used in an indexed instruction and stores
that address value, rather than the data at that address, in a
pointer register. This makes all the features of the internal
addressing hardware available to the programmer. Some of
the implications of this instruction are iilustrated in Table 3.

The LEA instruction also allows the user to access data
and tables in a position independent manner. For example:

LEAX MSGI1, PCR
LBSR PDATA (print message routine)

[]
[
MSG1 FCC "MESSAGEFE’

This sample program prints: ‘MESSAGE’. By writing
MSG1, PCR, the assembler computes the distance between
the present address and MSG1. This result is placed as a
constant into the LEAX instruction which will be indexed
from the PC value at the time of execution. No matter where
the code is located when it is executed, the computed offset
from the PC will put the absolute address of MSG1 into the X
pointer register. This code is totaily position independent.

The LEA instructions are very powerful and use an internal
holding register (temp). Care must be exercised when using
the LEA instructions with the auto increment and auto
decrement addressing modes due to the sequence of internal
operations. The LEA internal sequence is outlined as follows:

LEAa b+ {any of the 16-bit pointer registers X, Y,
U, or S may be substituted for a and b}

1. b—temp (calculate the EA)

2. b+1—b (modify b, postincrement)

3. temp—2a (load a)

LEAa ,-b

1. b—1—temp (calculate EA with predecrement)

2. b-1—b (modify b, predecrement)

3. temp—a (load a)

TABLE 3 — LEA EXAMPLES

Instruction Operation

Comment

LEAX 10, X | X+ 10 —X
LEAX 500, X | X + 500 — X
LEAY A Y | Y+A —=Y
LEAY D,Y | Y+D —Y
LEAU-10,U | U-10 —U
LEAS -10,S | S-10 — S
LEAS 10,S [S+10 —S
LEAX 55 [S+5 —X

Adds 5-Bit Constant 10 to X
Adds 16-Bit Constant 500 to X
Adds 8-Bit A Accumulator to Y
Adds 16-Bit D Accumulator to Y
Substracts 10 from U

Used to Reserve Area on Stack
Used to 'Clean Up’' Stack
Transfers As Well As Adds

MC6809

Auto increment-by-two and auto decrement-by-two instruc-
tions work similarly. Note that LEAX ,X+ does not change
X; however, LEAX, — X does decrement; LEAX 1, X should
be used to increment X by one.

MUL

Multiplies the unsigned binary numbers in the A and B ac-
cumulator and places the unsigned result into the 16-bit D
accumulator. The unsigned multiply also aliows multiple-
precision multiplications.

LONG AND SHORT RELATIVE BRANCHES

The MC6809 has the capability of program counter relative
branching throughout the entire memory map. In this mode,
if the branch is to be taken, the 8- or 16-bit signed offset is
added to the value of the program counter to be used as the
effective address. This allows the program to branch
anywhere in the 64K memory map. Position-independent
code can be easily generated through the use of relative
branching. Both short (8-bit) and long (16-bit) branches are
available.

SYNC

After encountering a sync instruction, the MPU enters a
sync state, stops processing instructions, and waits for an
interrupt. If the pending interrupt is non-maskabie {(NMI) or
maskable (FIRQ, IRQ) with its mask bit (F or 1) clear, the pro-
cessor will clear the sync state and perform the normal inter-
rupt stacking and service routine. Since FIRQ and IRQ are
not edge-triggered, a low level with a minimum duration of
three bus cycles is required to assure that the interrupt will
be taken. If the pending interrupt is maskable (FIRQ, 1RQ)
with its mask bit (F or 1) set, the processor will clear the sync
state and continue processing by executing the next in-line
instruction. Figure 38 depicts sync timing.

SOFTWARE INTERRUPTS

A software interrupt is an instruction which will cause an
interrupt and its associated vector fetch. These software in-
terrupts are useful in operating system calls, software
debugging, trace operations, memory mapping, and soft-
ware development systems. Three levels of SWI are available
on the MC6809, and are prioritized in the following order:
SWI, SWI2, SWi3.

16-BIT OPERATION

The MC6809 has the capability of processing 16-bit data.
These instructions include loads, stores, compares, adds,
subtracts, transfers, exchanges, pushes, and pulls.

CYCLE-BY-CYCLE OPERATION

The address bus cycle-by-cycle performance chart (Figure
18) illustrates the memory-access sequence corresponding
to each possible instruction and addressing mode in the
MC6809. Each instruction begins with an opcode fetch.
While that opcode is being internally decoded, the next pro-
gram byte is always fetched. (Most instructions will use the
next byte, so this technique considerably speeds through-
put.) Next, the operation of each opcode will follow the
flowchart. VMA is an indication of FFFF1g on the address
bus, R/W=1 and BS=0. The following examples illustrate
the use of the chart.

Example 1: LBSR (Branch Taken)
Before Execution SP = FO00

$8000 LBSR CAT

$A000 CAT

CYCLE-BY-CYCLE FLOW

Cycle # | Address | Data |R/W |Description

1 8000 17 1 |Opcode Fetch

2 8001 | 20 | 1 |Offset High Byte

3 8002 00 1 |Offset Low Byte

4 FFFF * 1 |VMA Cycle

5 FFFF * 1 {VMA Cycle

6 A000 * 1 {Computed Branch Address

7 FFFF * 1 {VMA Cycle

8 EFFF 80 0 |Stack High Order Byte of
Return Address

9 EFFE 03 0 |Stack Low Order Byte of
Return Address

Example 2: DEC (Extended)
$8000 DEC $A000

$A8000 $80

CYCLE-BY-CYCLE FLOW

Cycle # | Address| Data {R/W|Description
1 8000 7A 1 |Opcode Fetch
2 8001 AO0 1 |Operand Address, High Byte
3 8002 00 1 |Operand Address, Low Byte
4 FFFF * 1 |VMA Cycle
5 A000 80 1 {Read the Data
6 FFFF . 1 |VMA Cycle
7 A000 7F 0 |Store the Decremented Data

* The data bus has the data at that particular address.

INSTRUCTION SET TABLES

The instructions of the MC6809 have been broken down
into five different categories. They are as follows:

8-bit operation (Table 4)

16-bit operation (Table 5)

Index register/stack pointer instructions {Table 6)
Relative branches (long or short) (Table 7)
Miscellaneous instructions {Table 8}

Hexadecimal values for the instructions are given in
Table 9.

PROGRAMMING AID

Figure 19 contains a compilation of data that will assist in
programming the MC6809.

MC6809

‘payyioads asIMIBYIO0 ssBjUN A g0 MO) 2160] pue A 0°Z yBiy 0160| 18 paytoads ase siNdINO pue sINdul ||e JOj SJUBWABINSEaWS WOJBABA '€

"ONAS 40 1n0 Jossadoid ayy

Buug 01 Alessaoau s! 8124 8UO Ajuo yBnoyje ‘uaxel 8q 01 1dnuIBUI 3ajueIeNB 01 SBJDAD 38JY1 10} MO| PJaY 89 ISNW DHIJ PUB DY| ‘1e8|0 BJe sIiq Ysew §| 'z
“(Burwi) 1dnusalyl) | pue g saInBiy UO W se 510AD syl UM sanunuod Buisseooid 1dnusiul (DYI 10 DHIJ PadseWUN ue Jo |WN) paidasoe si idnisel
-UI By} §1 ‘19ABMOH ' | + Jd UOIBOO| SSIPPE WO} |18} UOIONIISUl UB aq [|Im 8|9AD siy) 'palsanbai s) 1dniaiul 8yl uaym 13s s 1Iq YSew paleroosse ayl §| °|

'SILON
SOd) AN
 sloN oes 53 o
LC 4y -

(¢ /A X S8

A

O\ o3 / X X ve
P —\ A X X My
& D D & & ¢ @ieq

X

| 910N 395

A

%.
XX

g {1+2d X 24 X X X ssaippy

L

L
_

| I B |

¥

ey ol

EmninEnEsliiglcinininSnSnl el
_

|
n._I__l.__________o

yoied uononnsu 86pajmoud
10NASUl JUAG jo
3|0A) 1587

ON

uTIVTlITlI.V_
v SUAS < a1ndex3

yoia4 1su|
8podd(Q SNOIA3I4
QUAS JO 819AD
1seq
INIL INAS — L1 34NOId

MC6809

NOTES

1 Each state shows:
Data Bus Offset High
Address Bus NNNN +112)

2 Address NNNN is location of opcode.

3. 1f opcode is a two byte opcode subsequent
addresses are in parenthesis {—).

4. Two-byte opcodes are highlighted.

FIGURE 18 — CYCLE-BY-CYCLE PERFORMANCE (Sheet 1 of 5)

Opcode Fetch

NNNN

Opcode = Yes
10 or 11?

No

Opcode. 2nd Byte

NNNN + 1

2nd Byte=

Relative Addressing
Mode ¥
BCC. BCS, BEQ. BGE, BGT, BHI,
¥ BHS, BLE. BLD. BLS, BLT, 8MI,
BNE, BPL, BRA, BRN,
Offset High 8SR, BVC, BVS Oftset
NNNN +1(2) NNNN+1
Ottset Low
NNNN + 2(3}
Don't Care
FFFF
Take Yes -
BranV !
Don’t Care
No
FFFF

Don't Care

Sub Dest Addr

!

Don’t Care

FFEF

!

Return Addr Low

Stack

Y

Return Addr High

Stack

!

MC6809

FIGURE 18 — CYCLE-BY-CYCLE PERFORMANCE (Sheet 2 of 5)

@ Inherent Addressing Mode I %

Aex‘ nrsI ASLA/B MULI swmI nnI SYNC cwml
ASRA/B . ‘
Don't Care Oon't Care CLRA/B Don't Care Don't Care Don't Care Don't Care CC Mask Condition
COMA/B Code Register
NNNN + | NNNN + 1 DAA NNNN + t NNNN + 12) NNNN+ 1 NNNN +1 NNNN+ 1 S
tack
DECA/B
! 1 s 1 1 Y Y
Don't Care PC High LSLA/B Don't Care Don't Care CCR — Don't Care
on't Care
FFFF Stack LSRA/B FFFF FFFF Stack NNNN +2 Don't Care
NEGA/B 3-State
) NoP ¥ ¥ ¥ FFFE
PC Low RoLa/B Don't Care PC Low Don't Care
RORA/B No g
Stack SEX FFFF Stack Interrupt FFFF
‘ TSTA/B ‘ ‘ Present? ‘ I;lenun;
resent:
Don't Care Don't Care Oon't Care PC High Yes PCLow
FFFF NNNN + 1 FFFF Stack A Register Eywes Stack
on't Care
¥ v Stack - ¥ Interrupt
3-State Vector High
Don’t Care User Stack Low { PC Hgh
FFFX
FFFF Stack B Regster Stack i
‘ { Stack ‘ Interrupt
Don’t Care User Stack High ‘ User Stack Low Vector Low
FFFF Stack Owect Page Stack FFEX + 1
! } Register ' ‘
Stack
Don’t Care Y Register Low ‘ User Stack High Don't Care
FFFF Stack Stack FFFF
‘ ‘ X Regrster High ‘
Stack
Don't Care Y Register High ‘ Y Register Low
FFFF Stack Stack
‘ l X Register Low T
Stack
Oon't Care X Regrster Low L Y Register High
FFFF Stack Stack
’ ‘ Y Register High ’
Stack
Oon t Care X Register High ‘ X Regrster Low
FFFF Stack Stack
} Y Register Low {
Stack
Direct Page ‘ X Register High
Register -
=2 Stack
Stack User Stack High ’
‘ Stack Direct Page
B8 Register ‘ Register
Stack User Stack Low Stack
! Stack ‘
A Regsster r— B Register
Stack Stack
T PC High T
Stack
Condition A Register
Code Register {
Stack PCL Stack
acl ow
‘ Stack ‘—.
Don't Care {
FFFF Don't Care
v Stack
Interrupt
Vector High
FEFX
Interrupt
Vector Low
FEEX +)
Don't Care
FFFF

MC6809

FIGURE 18 — CYCLE-BY-CYCLE PERFORMANCE (Sheet 3 of 5)

Immediate Addressing Mode

TFR l EXGI PULU PSHU I Al tnstructions
PULS PSHS Except
Post Byte Post Byte Post Byte Post Byte :g:;’
NNNN+ 1 NNNN+ 1 NNNN + 1 NNNN+ 1 PULS
¥ ¥)] o
and
Don't Care Don't Care Don't Care Don't Care EXG
FFFF FFFF FFFF X Register High FFFF X Register Low
‘ { { Stack ‘ Stack
Don't Care Don't Care Don't Care } Don't Care ‘
FFFF FFFF FFFF X Register Low FFFF X Register High
{ ‘ Stack ‘ Stack
Don't Care Don't Care Don't Care
FFFF FFFF Stack
‘ } Post Byte
Don't Care Don’t Care But ::
Post Byte Set
FFFF FFFF Condition Bit7 ¢
i Code Register Ser? es
Stack Y Register High Direct Page
Don't Care Yes Register
Stack
FFFF ‘ PC Low Stack
‘ Stack
Y Register Low
Don’t Care = ‘
Stack
FFFF PC High
Stack

B Register

Stack

U/S Stack
Painter High
Stack U/S Stack Post Byte
‘ Pointer Low Bit1
R U7S Stack Stact F
B Register tacl
Pointer Low ‘ Yes
Stack
r Stack U/S Stack A Register
Pointer High
Stack
Stack

Set?
Dwrect Page
Regster PC High Ye:
Stack Stack Condition
{ Y Regster Low Code Register
t Stack Stack
PC Low ‘
Stack
T Y Register High
‘ Stack
. |
Stack

Post Bvte
810

)

Q

Direct Esreraes
Adaressing Aagressing

Mode ‘Aoge

LLele Lo
Address Lov L3gress ~gr
NARA - NAAN -T2
Dor't Care Loaress (04

FFEEC AN K

MC6809

FIGURE 18 — CYCLE-BY-CYCLE PERFORMANCE (Sheet 4 of 5

©

Indexed Addressing Mode ‘

Post Byte
NNNN +(2) .
0 Ottset 5-8it Offset 8-Bnt Otfser 16-31t Oftset A/8 Oftset D Oftset Inc/Dec Inc/Dec PC £ 16-8it Extended PCt8Bit
From R From R From R From R From R From R Rby 1t Rby2 Ofiset indirect Offset
Don't Care Don't Care Otiset Offset High Don't Care Don't Care Don't Care Don't Care Offset High Address High Offset
NNNN + 2(3) NNNN +2(3) NNNN + 2(3} NNNN + 2(3) NNNN + 2(3) NNNN + 2(3! NNNN + 2(3) NNNN+2(3) NNNN + 2(3) NNNN + 2(3} NNNN + 2(3)
Don't Care Don't Care Offset Low Don't Care Don't Care Don't Care Don't Care Otfset Low Address Low Don't Care
FEFF FFFF NNNN + 3(4) FFFF NNNN + 3(4) FFEF FFFF NNNN + 3(4) NNNN + 3(4) FFFF
Don't Care Oon't Care Don't Care Don't Care Don't Care Don't Care
NNNN + 45} NNNN +4(5) FFFF FFFF NNNN + 4(5) NNNN +4(5)
Don't Care Don't Care Don't Care Don't Care
FFFF FFFF FFFF FFEF
Don't Care Don't Care -Don't Care
FFFF FFFF FFFF
Oon’t Care
FFFF
XXXX
Indirect”
Constant Offset from R
N Indwect High No Offset Index Register
° - 8-8it Offset Index Register + Offset Byte
XX 16-81t Otfset Index Register + Offset High Byte: Offset Low Byte
‘ Accumulator Offset from R
indirect Low A Register Offset index Register + A Register
XXXX+ 1 8 Regrster Offset index Register + B Register
‘ D Register Offset Index Register + D Register
Don't Care Auto Increment/ Decrement R -
increment by 2 index Register
FFFF Decrement by 2 index Regrster - 2

PR

Constant Offset from PC
8-8nt Offset
16-bnt Offset

Extended Indirect
16-Bit Address

Program Counter

+ Offset Byte

Program Counter + Oftset High Byte: Offset Low Byte

Address High By!

* The index register 1s incremented following the indexed access

te: Addres Low Byte

MC6809

FIGURE 18 — CYCLE-BY-CYCLE PERFORMANCE (Sheet 5 of 5)

Eftective Address i

ANDCC, IMP ADCA/B, STA/B
ORCC (All Except ADDA/B, (All Except
(Immediate immediate) ANDA/B, Immediate)
Only) BITA/B,
CMPA/B,
EDRA/B.
LDA/B, Register (Wnite)
ORA/B, EA
SBCA/B,
susa/s
Data
NNNN+1
Don’t Care
NNNN -
Data
EA

LDD, BEE -3 ASL, ASR, TST JSR LEAS,
STU, STX, CLR, COM, (AN Except (All Except LEAV.
LDU, A DEC. INC. Immediate! immediate! LEAX,
LDX, Except LSL. LSR, LEAY
Immediate) NEG. ROL. f (incexed Oniy
RODR (Al yvors
Except on't Care
tmmediate) Sub Address
y ¥
Register High Register High Data Data Data High Don't Care Don't Care
EA [Weite) EA EA EA FFFF FFFF
! T ! I ! !
Register Low Don’t Care Don't Care Data Low PC Low (Wnite)
Register Low
EA+1 (Write) FFFF FFFF EA+1 Stack
EA+1 ‘ ‘ l ‘
Data iwnte) Don't Care Don't Care PC High (Wnte)
EA FFFF FFFF Stack

¥

1

¥

1

Constam Oftfset from R
No Offset
5-Bit Otfset
8-Bit Offset
16-Bit Offset

Accumulator Oftset from R
A Register Oftset
B Register Otfset
D Register Offset

Auto Increment/ Decrement R

Increment by 1
increment by 2
Decrement by 1
Decrement by 2

Constant Offset from PC
it Otfset
16-Bit Otfset
Direct

Extended

Immediate

° The index regrster 1s incremented following the indexed access

Effecuve Address (EA)

Index Register
Index Register
index Register + Post Byte
index Register + Post Byte High Post Byte Low

index Register + A Register
Index Register + B Register
Index Register + D Register

index Reguster:
index Register
index Register -1
Index Register -2

Program Counter + Oftset Byte
Program Counter + Offset Migh Byte Oftset Low Byte

Direct Page Register Address Low

Address High: Address Low

NNNN+1

MC6809

TABLE 4 — 8-BIT ACCUMULATOR AND MEMORY INSTRUCTIONS

Mnemonic(s) Operation
ADCA, ADCB Add memory to accumulator with carry
ADDA, ADDB Add memory to accumulator
ANDA, ANDB And memory with accumulator

ASL, ASLA, ASLB

Arithmetic shift of accumulator or memory left

ASR, ASRA, ASRB

Arithmetic shift of accumulator or memory right

BITA, BITB Bit test memory with accumulator
CLR, CLRA, CLRB Clear accumulator or memory location
CMPA, CMPB Compare memory from accumulator

COM, COMA, COMB

Complement accumulator or memory location

DAA

Decimal adjust A accumuiator

DEC, DECA, DECB

Decrement accumulator or memory location

EORA, EORB Exclusive or memory with accumulator

EXG R1, R2 Exchange R1 with R2 (R1, R2 = A, B, CC, DP)
INC, INCA, INCB Increment accumuiator or memory location
LDA, LDB Load accumulator from memory

LSL, LSLA, LSLB

Logical shift left accumulator or memory location

LSR, LSRA, LSRB

Logical shift right accumulator or memory location

MUL

Unsigned multiply (A x B -~ D)

NEG, NEGA, NEGB

Negate accumulator or memory

ORA, ORB

Or memory with accumulator

ROL, ROLA, ROLB

Rotate accumulator or memory left

ROR, RORA, RORB

Rotate accumulator or memory right

SBCA, SBCB Subtract memory from accumulator with borrow
STA, STB Store accumulator to memory

SUBA, SuBB Subtract memory from accumulator

TST, TSTA, TSTB Test accumulator or memory location

TFR R1, R2 Transfer R1 to R2 (R1, R2 = A, B, CC, DP)

NOTE: A, B, CC, or DP may be pushed to (pulled from) stack with either PSHS, PSHU
(PULS, PULU) instructions.

TABLE 5 — 16-BIT ACCUMULATOR AND MEMORY INSTRUCTIONS

Mnemonic(s) Operation
ADDD Add memory to D accumulator
CMPD Compare memory from D accumulator
EXG D, R Exchange D with X, Y, S, U, or PC
LDD Load D accumulator from memory
SEX Sign Extend B accumulator into A accumulator
STD Store D accumulator to memory
SuBsD Subtract memory from D accumulator
TFR D, R Transfer D to X, Y, S, U, or PC
TFR R, D Transfer X, Y, S, U, or PCto D

NOTE: D may be pushed (pulled) to stack with either PSHS, PSHU (PULS,
PULU) instructions.

MC6809

TABLE 6 — INDEX REGISTER/STACK POINTER INSTRUCTIONS

Instruction Description
1CMPS, CMPU Compare memory from stack pointer
CMPX, CMPY Compare memory from index register
EXG R1, R2 Exchange D, X, Y, X, U, or PC with D, X Y, S, U, or PC
LEAS, LEAU Load effective address into stack pointer
LEAX, LEAY Load effective address into index register
LDS, LDU Load stack pointer from memory
LDX, LDY Load index register from memory
PSHS Push A, B, CC, DP, D, X, Y, U, or PC onto hardware stack
PSHU Push A, B, CC, DP, D, X, Y, S, or FC onto user stack
PULS Puill A, B, CC, DP, D, X, Y, U, or PC from hardware stack
PULU Pull A, B, CC, DP, D, X, Y, S, or PC from hardware stack
STS, STU Store stack pointer to memory
STX, STY Store index register to memory
TFR R1, R2 Transter D, X, Y, S, UorPCtoD, X, Y, S, U, or PC
ABX Add B accumulator to X (unsigned)
TABLE 7 — BRANCH INSTRUCTIONS
Instruction | Description
SIMPLE BRANCHES
BEQ, LBEQ Branch if equal
BNE, LBNE Branch if not equal
BMI, LBMI Branch if minus
BPL, LBPL Branch if plus
BCS, LBCS Branch if carry set
BCC, LBCC Branch if carry clear
BVS, LBVS Branch if overflow set
BVC, LBVC Branch if overflow clear
SIGNED BRANCHES
BGT, LBGT Branch if greater (signed)
BVS, LBVS Branch it invalid 2s complement result
BGE, LBGE Branch if greater than or equal (signed)
BEQ, LBEQ Branch if equal
BNE, LBNE Branch if not equal
BLE, LBLE Branch if less than or equal (signed)
BVC, LBVC Branch if valid 2s complement result
BLT, LBLT Branch if less than (signed)
UNSIGNED BRANCHES
BHI, LBHI Branch if higher (unsigned)
BCC, LBCC Branch if higher or same (unsigned)
BHS, LBHS Branch if higher or same (unsigned)
BEQ, LBEQ Branch if equal
BNE, LBNE Branch if not equal
BLS, LBLS Branch if lower or same {(unsigned)
BCS, LBCS Branch if lower {unsigned)
BLO, LBLO Branch if lower (unsigned)
OTHER BRANCHES
BSR, LBSR Branch to subroutine
BRA, LBRA Branch always
BRN, LBRN Branch never
TABLE 8 — MISCELLANEOUS INSTRUCTIONS
Instruction Description
ANDCC AND condition code register
CWAI AND condition code register, then wait for interrupt
NOP No operation
ORCC OR condition code register
JMP Jump
JSR Jump to subroutine
RTI Return from interrupt
RTS Return from subroutine

SWI, SWI2, SWI3

Software interrupt (absolute indirect)

SYNC

Synchronize with interrupt line

R
Q

MC6809

TABLE 9 — HEXADECIMAL VALUES OF MACHINE CODES

OP | Mnem Mode | ~ F OP | Mnem Mode |~ # OP | Mnem Mode |~ #

00 NEG Direct | 6 2 30 LEAX Indexed | 4+ | 2+ 60 NEG Indexed |6+ | 2+
o1 | = A 31 | LEAY A Ja+ |2+ 61 | * A

02 * 32 LEAS 4 4+ |2+ 62 *

03 coM 6 2 33 LEAU Indexed { 4+ | 2+ 63 coM 6+ | 2+
04 LSR 6 2 34 PSHS Immed {5+ | 2 64 LSR 6+ | 2+
05 | * 36 | PULS Immed |5+ |2 65 | *

06 ROR 6 2 36 PSHU Immed {5+ |2 66 ROR 6+ | 2+
07 ASR 6 2 37 PULU Immed |5+ | 2 67 ASR 6+ | 2+
08 &L, LSL 6 2 38 * - 68 _Q_SL LSL 6+ | 2+
09 ROL 6 2 39 RTS Inherent | 6 1 69 ROL 6+ | 2+
0A | DEC 6 2 3A | ABX 3 1 6A | DEC 6+ | 2+
o8 * 38 RTI 6/15] 1 68 *

oC INC 6 2 3C CWAI 2202 6C INC 6+ | 2+
oD TST 6 2 3D MUL Inherent| 11 1 6D TST 6+ | 2+
(0] 3 JMP] 3 2 3E * - 6E JMP J 3+ | 2+
OF CLR Direct | 6 2 3F SWI inherent] 19 1 6F CLR Indexed |6+ | 2+
10 Page 2 - — — 40 NEGA Inherent | 2 1 70 NEG Extended| 7 3

1 Page 3 - - - a1 * A 7 * A

12 NOP Inherent| 2 1 42 * 72 *

13 SYNC Inherent| 24 | 1 43 COMA 2 1 73 COM 7 3

14 * 44 LSRA 2 1 74 LSR 7 3

15 * 45 » 75 *

16 LBRA Relative | 5 3 46 RORA 2 1 76 ROR 7 3

17 LBSR Relative | 9 3 47 ASRA 2 1 77 ASR 7 3

18 * 48 ASLA, LSLA 2 1 78 ASL, LSL 7 3

19 DAA Inherent | 2 1 49 ROLA 2 1 79 ROL 7 3

1A | ORCC Immed | 3 2 4A | DECA 2 1 7A | DEC 7 3

1B * - 48 * 78 *

1C | ANDCC Immed | 3 2 4C INCA 2 1 7C INC 7 3

1D | SEX Inherent | 2 i 4D | TSTA 2 1 70 | TST 7 3

1E EXG Immed | 8 2 4E *] 7E JMP 7 4 3

1F TFR Immed | 6 2 4F CLRA Inherent{ 2 1 7F CLR Extended| 7 3

20 BRA Relative | 3 2 50 NEGB inherent{ 2 1 80 SUBA Immed |2 2

21 BRN A 3 2 51 » A 81 CMPA 2 2

22 BHI 3 2 52 * 82 SBCA 2 2

23 BLS 3 2 53 COMB 2 1 83 SUBD 4 3

24 BHS, BCC 3 2 54 LSRB 2 1 84 ANDA 2 2

25 BLO, g_s 3 2 55 * 85 BITA 2 2

26 BNE 3 2 56 RORB 2 1 86 LDA 2 2

27 BEQ 3 2 57 ASRB 2 1 87 *

28 BVC 3 2 58 ASLB, LSLB 2 1 88 EORA 2 2

29 BVS 3 2 59 ROLB 2 1 89 ADCA 2 2

2A | BPL 3 2 5A DECB 2 1 8A | ORA 2 2

2B BMI 3 2 58 * 88 ADDA 2 2

2C BGE 3 2 5C INCB 2 1 8C CMPX Immed |4 3

20 BLT 3 2 5D | TSTB 2 1 8D BSR Relative | 7 2

2€ BGT] 3 2 5E . 8E LDX immed |3 3

2F BLE Relative | 3 2 5F CLRB Inherent| 2 1 8F *

LEGEND:

~ Number of MPU cycles (less possible push pull or indexed-mode cycles)
Number of program bytes
* Denotes unused opcode

MC6809

TABLE 9 — HEXADECIMAL VALUES OF MACHINE CODES (CONTINUED)

OP Mnem Mode | ~ | # oP | Mnem Mode |~| ¢+ Jop [Mnem [Mode |- |1
90 SUBA Direct |4 2 co SUBB immed |2 2
g; ggﬂé’: A ja |2 c1 | cmps 2 | 2 Page 2 and 3 Machine
4 2 c2 | sBcB 2 2 Codes
93 susD 6 2 c3 ADDD 4 3
; ANDA 4 2 C4 | ANDB 2 2 1021 | LBRN Relative |5 4
BITA 4 2 C5 | BITB Immed |2 2 1022 | LBHI A |[s@1] 4
3673 lé?: 4 2 c6 | LDB Immed |2 2 1023 | LBLS" 5(6) | 4
o oo 4 2 c7{* ‘ 1024 | LBHS, LBC 5(6) | 4
A 4 2 c8 | EORB 2 2 1025 | LBCS, LBLO 5(6) | 4
39 ADCA 4 2 c9 { ADCB 2 2 1026 | LBNE 56) | 4
gA ORA 4 2 CA | ORB 2 2 1027 | LBEQ 56) | 4
98 ADDA 4 2 cB | ADDB 2 2 1028 | LBVC 5(6) | 4
gg 5MRPX 6 2 cc| top 3 3 1029 | LBVS 5(6) | 4
o S 7 2 co| + 102A | LBPL 5(6) | 4
LDX Yy |® 2 CE | LDU immed |3 3 1028 | LBMI 5(6) | 4
9F STX Direct |5 2 CF | » 102C | LBGE 5(6)| 4
) 102D 4
A0 SUBA Indexed { 4+ | 2+ DO | SuBB Direct 14 2 102E tE(ﬂ 2{2} 4
Al CMPA A o+ | 2+ D1 | CMPB A 4] 2 v
102F | LBLE Relative | 5(6) | 4
A2 SBCA 44+ | 2+ D2 | SBCB a1 2
103F | SWI2 Inherent | 20 2
A3 SUBD 6+ | 2+ D3 | ADDD 6 2
1083 | CMPD immed |5 4
A4 ANDA 4+ | 2+ D4 | ANDB 41 2
108C | CMPY | s |4
A5 BITA 4+ | 2+ D5 | BITB 4 2
108E | LDY immed {4 4
A6 LDA 4+ | 24 D6 | LDB 41 2
1083 | CMPD Direct |7 3
A7 STA 4+ | 2+ D7 | STB 41 2
109C | CMPY 7 3
A8 EORA 4+ | 2+ D8 | EORB 41 2
109€ | LDY 6 3
A9 ADCA 4+ | 2+ D9 | ADCB 41 2 ~
109F | STY Direct |6 3
AA ORA a+ | 2+ DA | ORB 41 2
10A3 | CMPD Indexed |7+ | 3+
AB ADDA 4+ | 2+ DB | ADDB 41 2
10AC] cMmPY 7+ | 3+
AC CMPX 6+ | 2+ DC | LDD 51 2
10AE | LDY 6+ | 3+
AD JSR 7+ | 2+ DD | STD 51 2
10AF | STY indexed |6+ | 3+
AE LDX Y |5+] 2+ DE | LDU A 2 10B3 | CMPD Extended |8 4
AF STX Indexed |5+ | 2+ DF | STU Direct 5 | 2 1 i06clcmpy g | a
EO SuB8 Indexed | 4+ 2+ 10BE | LDY 7 4
BO SUBA Extended] 5 3 g1 | cmps Ar 4+ 2+ | 10BF|sSTY Extended|7 4
Bl CMPA A |5 |3 £2 | secs 4+ 2+ | 10ce|Lps immed |4 | 4
B2 SBCA 5 3 E3 | ADDD 6+| 2+ § 1cDE|LDS Direct |6 3
B3 SuBD 7 3 E4 | ANDB 4+| 2+ § 10DF|STS Direct |6 3
gg g\gle 5 3 E5 | BITB 4+ 2+ J 10€€ |LDS Indexed §6+ | 3+
o o 5 3 E6 | LDB 4+1 2+ | 10eF|sTS indexed |6+ | 3+
L 5 3 7 | sTB 4+ 2+ | 10re |LDS Extended| 7 4
B7 STA 5 3 8 | EORB 4+ 2+ | 10FF|sTS Extended}7 4
B8 EORA 5 3 E9 | ADCB 4+ 2+] 113F |swi3 Inherent |20 | 2
B9 ADCA 5 13 EA | ORB 4+ 2+] 1183 |CMPU immed |5 | 4
BA ORA 5 |3 EB | ADDB [4% 2+ | n8C |cMPS Immed |5 | 4
BB ADDA 5 3 EC | LDD 5+ 2+ 1193 JcMPU Direct |7 3
gg CglRPX 7 3 ED | STD 5+ 2+ J 119c|cmps Direct |7 3
J 8 3 EE | LOU v s+ 2+] 11a3]cmpu Indexed |7+ | 3+
gﬁ LDX y |8 3 EF | STU indexed |5+] 2+ | 11ac]cmps indexed |7+ | 3+
STX Extended| 6 3 1183 | cmPU Extended|8 4
FO SuUBB Extended| 5 3 1eclom
F1 CMPB A 5 3 PS Extended}8 4
F2 | sBCB 5 3
F3 | ADDD 7 3
F4 | ANDB 51 3
F5 | BITB 5 3
F6 | LDB 5 3
F7 | STB 5 3
NOTE: All unused opcodes are both undefined F8 EORB 5 3
and illegal F9 ADCB 5 3
FA | ORB vy |5 3
FB ADDB Extended| 5 3
FC LDD Extended| 6 3
FD | STD 6 3
FE | LDU 6 3
FF STU Extended| 6 3

MC6809

FIGURE 19 — PROGRAMMING AID

Addressing Modes
Immediate Direct Indexed Extended Inherent 5|3]2}11}j0
Instruction| Forms [Op | ~| #| Op |~ 1| #] Op|f ~] #[Op] ~| #]|Op| ~ | # Description HIN{Z|V|C
ABX 3A(3 1 | B+ X=X (Unsigned) ele|ojele
ADC ADCA 89 {2 2| 99| 4 2| A9|4+]2+]| B9| 5 3 A+M+C—-A SN RERE
ADCB C9 |2 2| D9 |4 2| E9}4+| 2+ F9| 5 3 B+M+C—-B IBREEERIR
ADD ADDA 88 | 2 219814 2] ABl4+|2+|BB| 5| 3 A+M=A I AREARERER
ADDB CB| 2 2|1 0B} 4 2| EB{4+| 2+| FB]| B 3 B+M-8 IS RERERER
ADDD C3| 4 3| D3| 6 2| E3|6+|2+| F3| 7 3 D+MM+1-D s3]yt
AND ANDA 84 |2 21 94 |4 2| Adl4+]| 2+ B4} 5 3 AAM=A el |t[0]e
ANDB C4 |2 21 D4 | 4 2| EAl4+]| 2+| F4]| B 3 BAM-B el1it110]fe
ANDCC |1C | 3 2 CC A IMM-=CC 7
ASL ASLA 48| 2 1 A < LIRS RERE R
ASLB se| 2| 1| B }DH_—_UI]:UIP—O 8lt|t]t]1
ASL 8|6]| 2| 68f6+]2+{78| 7|3 M7C by bo IR R
ASR ASRA 471 21 1 A — 8lt]t]eft
ASRB 571 2] 1 B} 8lt|1jeft
ASR o7 |6 | 2] 67{6+|2+] 77| 7| 3 M b7 8lil1]ef1
BIT BITA 85 | 2 2] 9% | 4 2| A5|4+|{ 2+ B5| 5 3 Bit Test A(M A A) ofti1|O]e
BITB Cc5]2 2|1 D5 | 4 2| E5|4+| 2+ FB 3 Bit Test B (M A Bi e|1j1{0]e
CLR CLRA 4F | 2 1{0—~-A e10{1{0(0
CLRB 5F{ 2 1{0-8 ei0{1{0]0
CLR OF | 6 2| 6F |6+ 2+ 7F | 7 3 0-M e|l0]1]0]0
CMP CMPA 81 2 21 91 |4 21 Alj4+{2+|B1| 5 3 Compare M from A 81t1t]1]1
CMPB C112 2|1 DV | 4 2|1 EV |4+ 2+ FV | 5 3 Compare M from B 8ttt
CMPD 1016 a4l 10 |7 31 10]7+|3+] 10| 8] 4 Compare MM + 1 from D el ltyt]
83 93 A3 B3
CMPS 1115 41 11 |7 31 1M |7+|3+] 11} 8 4 Compare MM + 1 from S ot lt]1t]
8C 9C AC BC
CMPU 11|15 a4l 11 |7 3] MNM|{7+|3+] 11| 8 4 Compare M:M + 1 from U el (|}
83 93 A3 B3
CMPX 8C | 4 3/ 9C |6 2| AC|6+| 2+ BC| 7 3 Compare M:M + 1 from X el]t}
CMPY 019 a4 101|7 3] 0|7+|3+] 10 8 4 Compare MM + 1 from Y AR AR RN
8C 9C AC BC
coMm COMA 43{ 2| 1[A-A eft]tr]|of
COMB 831] 2 1 E—- B el]|t1]0Of
COM 03 |6 21 63|6+12+| 73} 7 3 M-M s|lt}j1}oOf
CWAI 3C [2z20 2 CC A IMM~CC Wart for Interrupt 7
DAA * 191 2 | 1 |Decimal Adjust A EERERIEE
DEC DECA 4A1 21 1{A-1=A EERRRE
DECB BA| 2 1{B-1-8B eftlt]|tl]e
' DEC oal6 | 2]|6al6+|2+|7Aa] 7] 3 M-1=M eliliit]e
EOR EORA 88 |2 2| 98 |4 | 2| AB|a+|2+|B8| 5| 3 AXM—A RN
EORB c8 | 2 21081 4 2| EBl4+| 2+ FB]| 5 3 B¥M-B ®oi111]0]e
EXG R1,R2 | 1€ 2 R1—R22 eleo|o]e
INC INCA 4C| 2 11A+1-A elt]tlt]e
INCB 5C| 2 1/8+1-B et lt|t]e
INC oC | © 21 6C|6+]2+]7C] 7 3 M+1—-M A RERERIE
IJMP oe [3] 2| ee[3+]2+| 7| a | 3 EA3-PC efole|efe
JSR 9D { 7 2| AD|7+{2+|8BD| 8] 3 Jump to Subroutine efeolo|e] e
LD LDA 86 | 2 2] 9% | 4 2| A6|4+|2+]|BB] 5 3 M—-A el 1]11|0]e
LD8B Ccé6 | 2 2y D6 |4 2| E6|4+| 2+| F6{ 5 3 M—-B °*|111]0je
LDD cC | 3 3{DC}|5 21 EC|5+]| 2+ FC| 6 3 MM+1-D *11]1]|0]e
LDS 10(4)] 4] 1016 3] 10|6+]3+] 10| 7] 4 MM+1=3 o[1]1{0fe
CE DE EE FE
LDU CE| 3 3] DE| S 2| EE|S5+[2+ FE| 6 3 MM+1=U elt1li1l0le
LDX 8E | 3 3] 9 |5 2| AE|5+| 2+]| BE} 6 3 MM+ 1-X ol 111{0]e
LOY 01 4 41 10| 6 31 106+ 3+ 10} 7 4 MM+ 1=-Y el1|1lo]e
8E 9E AE BE
LEA LEAS 32]4+] 2+ ga3—s elefe|efe
LEAU Bfa+| 2+ gad3—u efo|e]e|e
LEAX 0/|4+] 2+ EAS—X eleli]ofe
LEAY 3{4+| 2+ gad—y oeleltjefe
LEGEND: M Complement of M t Test and set if true, cleared otherwise
OP Operation Code (Hexadecimal) — Transfer Into * Not Affected
~ Number of MPU Cycles H Half-carry (from bit 3} CC Condition Code Register
Number of Program Bytes N Negative (sign bit) Concatenation
+ Arithmetic Plus z Zero result v Logical or
— Arithmetic Minus V Overflow, 2's complement A Logical and
¢ Multiply C Carry from ALU ¥ Logical Exclusive or

MC6809

FIGURE 19 — PROGRAMMING AID (CONTINUED)

Addressing Modes

Immediate Direct Indexed? Extended Inherent 5{3]2[/1]0
Instruction; Forms [Op| ~ [#] Op| ~| #} Op] ~| #] Op| ~|] #] Op| ~ | # Description HINTZ]|V]|C
LSt LSLA 481 2 {1 A o S— eit]t
LS8 so| 2| 1| SWO{TIITIIT0 [+|t]t s
LSL o8| 6| 2| 686+ 2+| 78] 7| 3 MIT & bo ol il
LSR LSRA a| 2| % elof1]e]:
LSRB s 2| 1| Spo>{IIIIIITF [«fofi]+]:
LSR 04| 6] 2| Ba|6+|2+| 74| 7| 3 b7 b0 ¢ Jejof1]e]!
MUL 3D| 11| 1 |[AxB=D tUnsignedi efeflifelg
NEG NEGA 0] 2 1 l_* 1—-A AR RN REE
NEGB 50| 2 1 _B_+ 1-B 8yt 1|ty
NEG 00| 6 2} 60|6+} 2+ 701 7 3 M+1—=M 8t 1|1l
NOP 121 2 1 [No Operation ejo|oelefe
OR ORA 8A| 2 2] %A | 4 21 AAJ4+) 2+ BA| 5 3 AV M=-A eit it (0]e
ORB CAl 2 2| DA| 4 2| EAl4+] 2+ FAL 5 3 BvVM-=B e|1{1|0]e

ORCC 1A} 3 2 CCVIMM-=CC 7
PSH PSHS 34 |5+4] 2 Push Registers on S Stack elojofeie
PSHU 36|5+4] 2 Push Registers on U Stack oo jeje e
PUL PULS 35 |5+4] 2 Pull Registers from S Stack o|ojefe|e
PULU 37(5+4] 2 Pull Registers from U Stack ole ole
ROL ROLA 491 2 T A [EEEEE RN R
ROLE co| 2 | | BT |«]i]o]]
ROL 09| 6] 2| 69|6+] 2+ 79| 7} 3 C by b0 ettt ti |
ROR RORA a6 2 | 1 '3 RERERERE
RORB 5% | 2 1 M eitjt]e|!?
ROR 06| 6| 2| 66|6+|2+| 76| 7| 3 ¢ by bo ol1]t]e]
RTI 3B |6/15 1 [Return From Interrupt 7
RTS 39| 5 1 {Return from Subroutine eje e oo
SBC SBCA 821 2 [2 92| 4 2| A2 |4+ 2+] B2| 5 3 A-M-C-A 811 {1 |11
SBCB cz2| 2 2| D2 2| E2|4+) 2+ F2]1 6| 3 B-M-C-8B 81t it {1]1
SEX D] 2 1 |Sign Extend B into A el1 10|
ST STA 971 4 2| A7(4+| 2+ B7] 5| 3 A—-M o111 |0O]°
STB D7{ 4| 2| E7|a+| 2+| F7| 5] 3 8-M . eli 11 lole
STD DD| 5| 2| ED |5+ 2+| FD| 6] 3 D-MM+1 e|l1 |1 |O]e
STS 0|6 3| 10]6+3+|10] 7] 4 S=MM+1 eliitlo]e

DF EF FF
STuU DF}| 5| 2| EF |5+ 2+| FF| 6] 3 U—=-MM+1 et l1l0}e
STX 9F | 5 2| AFI5+| 2+ BF| 6 3 X-MM+1 o1 {1 10}e
STY 1016 3} 10 0| 7] 4 Y=MM+1 elililo]e
9F AF 16+| 3+ | BF
SuB SUBA B0| 2 [2] 904]| 2] A0}4+|(2+1BO|B]| 3 A-M-—A 8|1t |11
SUBB Col 2 {2|DO| 4| 2|EOj4+j2+| FO} B 3 B-M-B 8t (1|t]
SUBD 83] 4 |3 93| 6 2| A3|6+]2+}{ B3] 7 3 D-MM+1-D IR EINERE
SWi swiP 3F | 19| 1 |Software Interrupt 1 o je jo oo
swi2b 10 | 20 | 2 |Software Interrupt 2 o je o le]e
3F
swi36 11| 20| 1 [Software Interrupt 3 ole o fo}]e
3F
SYNC 13 | 24} 1 |Synchronize 1o interrupt oo [o o]e
TFR R1.R2 |1F| 6 |2 R1-R2¢ oo [s] |e
TST TSTA aD | 2 1 {Test A . 1]0]e
TSTB 50| 2 | 1 |Test B . 1t {0 |e
TST OD| 6] 2}|6D}6+}2+| 7D 7{ 3 Test M ey |1 o]
NOTES:
1. This column gives a base cycle and byte count. To obtain total count, add the values obtained from the INDEXED ADDRESSING MODE table,
Table 2.

2. R1 and R2 may be any pair of 8 bit or any pair of 16 bit registers.
The 8 bit registers are: A, B, CC, DP
The 16 bit registers are: X, Y, U, S, D, PC

EA is the effective address.

The PSH and PUL instructions require 5 cycles plus 1 cycle for each byte pushed or pulled.
5(6) means: 5 cycles if branch not taken, 6 cycles if taken (Branch instructions).

SWi sets | and F bits. SWI2 and SWI3 do not affect | and F.

Conditions Codes set as a direct result of the instruction.

Vaue of half-carry flag is undefined.

Special Case — Carry set if b7 is SET.

©®NOOO e W

MC6809

FIGURE 19 — PROGRAMMING AID (CONTINUED)
Branch Instructions

Addressing Addressing
1 Mode Mode
Relative 5({312{1]0 |__Relative | 5{3]2]11]0
Instruction!| Forms | OP| ~ 5| # Description H|IN|Z|V]|C Instruction| Forms [(OP | ~5| # Description HINjZ|V|C
BCC BCC 24| 3 | 2 |Branch C=0 ejofeleo]e BLS BLS 23| 3 | 2 |Branch Lower of{ofo]e]e
LBCC 10 | 56}| 4 [Long Branch o|lojefe]e or Same
24 C=0 LBLS 10 {5(6)}] 4 lLong Branch Lower |e[efeje e
BCS BCS 25| 3 [2 [Branch C=1 efefolefe 3 or Same
LBCS 10 | 516)| 4 |Long Branch ojojejele BLT BLT 20| 3 | 2 |Branch<Zero oo foje]e
25 C=1 LBLT 10 |5i6)| 4 JLong Branch<Zero |e|e]e]e e
BEQ BEQ 27| 3 | 2 |BranchZ=1 ' DRI 20
LBEQ 10| 5(6)| 4 |Long Branch slefojele BMI 8MI 281 3 | 2 |Branch Minus e|ejejeie
27 2=1 LBMI 10 {5(6)] 4 {Long Branch Minus |e e le]e e
BGE BGE 2| 3 | 2 |Branch2Zero elefefefe 28
LBGE 10|5(6)| 4 |Long BranchxZero | e|efe]e (e BNE BNE 26| 3 | 2 |BranchZ=0 olofofe]e
2C LBNE 10 |5(6)} 4 [Long Branch o|e|ele]e
BGT BGT 2e| 3 | 2 [Branch>Zero ofofefe]e 2% 2=0
LBGT 10| 5(6)| 4 {Long Branch>Zero | e|e|e| e} e BPL BPL 2A| 3 | 2 |Branch Plus .
2E LBPL 10 |5(6)| 4 jLong Branch Plus oflejejefe
BH! BHI 22| 3 | 2 {Branch Higher ejejele]e 2A
LBHI 10 | 5(6)] 4 {Long Branch Higher | e | e e o] e BRA BRA 20] 3 | 2 |Branch Always elelejoe
22 LBRA 16| 5 | 3 |Long Branch Always e |e[e]ele
BHS BHS 24| 3 | 2 |Branch Higher eflololeoje BRN BRN 21| 3 | 2 |Branch Never elelolole
or Same LBRN 10} 5 | 4 |Long Branch Never |e|e|e]e e
LBHS 10 15(6)| 4 |Long Branch Higher | e | el o] o) e 21
24 or Same BSR BSR 80| 7 | 2 [Branch to Subroutine|s [e e je |e
BLE BLE 2F| 3 | 2 {BranchsZero o|efelefe LBSR 17§ 9 | 3 |Long Branch to elejele
LBLE 10| 5(6)] 4 |Long BranchsZero e[ejeje| e Subroutine
2F BVC 8vC [3]2 [Branchv=0 efefelofe
BLO BLO 25| 3t 2 {Branch lower ejejelele LBVC 10 |5(6){ 4 |Long Branch ejlojelee
LBLO 10 | 5(6}| 4 |Long Branch Lower [ej e ei e} e 28 V=0
2% BVS BVS 2| 3 | 2 [Branch V=1 elelele]*
LBVS 10 {5(6) | 4 |Long Branch efolefole
29 V=1
SIMPLE BRANCHES SIMPLE CONDITIONAL BRANCHES (Notes 1-4)
opP -~ # Test True oP False oP
BRA 20 3 2 N=1 BMI 28 BPL 2A
LBRA 16 5 3 Z=1 BEQ 27 BNE 26
8RN 2N 3 2 V=1 BVS 29 BVC 28
LBRN 1021 5 4 C=1 BCS 2% BCC 2
BSR 8D 7 2
LBSR 17 9 3
UNSIGNED CONDITIONAL BRANCHES (Notes 1-4) SIGNED CONDITIONAL BRANCHES (Notes 1-4)
Test True OP False oP Test True OP False oP
r>m BHI 22 BLS 23 >m BGT 2E BLE 2F
rzm BHS 24 BLO 25 ’ rzm BGE 2C BLT 20
. r=m BEQ 27 BNE 26 r=m BEQ 27 BNE 26
rsm BLS 23 BH! 22 rsm BLE 2F BGT 2E
r<m BLO 25 BHS 24) r<m BLT 20 BGE 2C

NOTES:
1. All conditional branches have both short and long variations.
2. All short branches are two bytes and require three cycles.
3. All conditional long branches are formed by prefixing the short branch opcode with $10 and using a 16-bit destination offset.
4. All conditional long branches require four bytes and six cycles if the branch is taken or five cycles if the branch is not taken.

ORDERING INFORMATION

Package Order Package Order
Type Frequency | Temperature Range Number Type Frequency | Temperature Range Number
Ceramic 1.0 MHz 0°C to 70°C MC6803L Cerdip 1.0 MHz 0°C to 70°C MC6809S
L Suffix 1.0 MHz —40°C to 85°C MC6809CL S Suffix 1.0 MHz —40°C t0 85°C MC6809CS
1.5 MHz 0°C to 70 °C MC68A09L 1.5 MHz 0°C to 70°C MCB8A03S
1.5 MHz ~40°C 10 85°C MCB8A03SCL 1.5 MHz —40°C to 85°C MCB8A09CS
2.0 MHz 0°C to 70 °C MC68809L 2.0 MHz 0°C to 70°C MC68B09S
2.0 MHz —40°C to 85°C MC68B09CL 2.0 MHz —40°C to 85°C MC68B0ICS
Plastic 1.0 MH2z 0°C to 70°C MC6809P
P Suffix 1.0 MHz —40°C 1o 85°C MC6809CP
1.5 MHz 0°C to 70°C MCE8A09P
1.5 MHz —40°C to 85°C MC68A03CP
2.0 MHz 0°C to 70°C MC68B09P
2.0 MHz —-40°C to 85°C MC68B0ICP

