
J. Kaiser
AOSI
IVS-EOS Sommersemester 2008

Operating Systems II

Distributed O-Systems

J. Kaiser
AOSI
IVS-EOS Sommersemester 2008

• characteristics of distributed systems

• order in distributed systems

• models of communication and sharing

• distributed shared memory

• distributed file systems

roadmap:

J. Kaiser
AOSI
IVS-EOS Sommersemester 2008

Multi-Processor Systems

Bus-based Multi-Processor with single central memory.
Realization: Hardware.
Problems: Cache coherence and memory consistency.

Abb.: F. Hauck: Modernen Konzepte verteilter Systeme (VL U.Ulm, 2002/02)

J. Kaiser
AOSI
IVS-EOS Sommersemester 2008

Multi-Processor Systems

Connection-based Multi-Processor with multiple memories.
Realization: Special switching network hardware (Omega networks, Banyan trees,..)
Problems: Complexity of the switching network.

J. Kaiser
AOSI
IVS-EOS Sommersemester 2008

log2 n stages

2k = N
inputs

An Omega switching network

J. Kaiser
AOSI
IVS-EOS Sommersemester 2008

Multi-Processor Systems

max. distance
Grid 6
Torus 3
Hyperc. 3

J. Kaiser
AOSI
IVS-EOS Sommersemester 2008

 data control

shared memory multiproc. c c tight coordination of
multiple execution engines

computer cluster d c central coordination of
proc/mem pairs working on
distributed data

distributed system d d no central component.

Types of Multi-Processor Systems

J. Kaiser
AOSI
IVS-EOS Sommersemester 2008

You know you have one when the crash of a
computer you have never heard of stops
you from getting any work done.

What is a distributed system?

Leslie Lamport:

Andrew Tanenbaum: A distributed system is composed from
multiple autonomous computers which
appear as a single computer for a user.

A distributed system is composed from
multiple autonomous computers which
coodinate actions by exchanging messages.

George Coulouris:

J. Kaiser
AOSI
IVS-EOS Sommersemester 2008

What is a distributed system?

 multiple computers (local CPU-/memory-/network-/I-O-components)

 computers are autonomous, i.e. they have an independent local control

 computers are connected by a network and basically communicate by
 exchanging messages

 there is no special central control and coordination facility

Distributed Data + Distributed Control

Essential properties:

J. Kaiser
AOSI
IVS-EOS Sommersemester 2008

What is a distributed system?

Essential properties:

 Concurrency of computations

 No global time (approximations possible)

Components fail independently

J. Kaiser
AOSI
IVS-EOS Sommersemester 2008

Why a distributed system?

Performance

Sharing of resources

Independence of failure and no single point of failure

Distributed nature of application

Distributed data

Extensibility and Scalability

J. Kaiser
AOSI
IVS-EOS Sommersemester 2008

Examples

The Internet

An Intranet

Distributed Control Systems

Ubiquitous and mobile computing environments

J. Kaiser
AOSI
IVS-EOS Sommersemester 2008

Internet
Service
Provider

 








Intranet

server

workstation

backb
one

backb
one

Backbone

satellite

connection

Example: Internet

J. Kaiser
AOSI
IVS-EOS Sommersemester 2008

Example: Intranet

router/
firewall

to the Internet

LAN

print
server

web
server

mail
server

file
server

LAN

LAN

J. Kaiser
AOSI
IVS-EOS Sommersemester 2008

Example: Control Networks

drastically increasing complexity

• 11.136 electrical parts
• 61 ECUs
• Optical bus for information and entertainment
• Sub networks based on proprietary serial bus
• 35 ECUs connected to 3 CAN-Busses
• 2500 signals in 250 CAN messges

J. Kaiser
AOSI
IVS-EOS Sommersemester 2008

“Island of control“ “Island of control“

“Island of control “

Controller Area Network (CAN)
 “Island of control“

“

cooperating “ islands of tight control“

(very) large number of mobile and stationary components

components are autonomous subsystems

and exhibit spontanous behaviour

interaction is dynamic and safety critical

Example: A networked physical world

J. Kaiser
AOSI
IVS-EOS Sommersemester 2008

concurrency, delays, faults

heterogeneity, openess, scalability

general problems:

more problems:

desirable properties:

A distributed system should be programmable like a
local, centralized computer ( see Tanenbaum).

Problems and desirable properties

Support to deal with the above problems in an
application specific way on an adequate level of
abstraction. Find a better definition!

???

J. Kaiser
AOSI
IVS-EOS Sommersemester 2008

Access transparency
Location transparency
Concurrency transparency
Migration transparency
Relocation transparency
Replication tranparency
Fault transparency
Persistency transparancy

Transparencies:

Qos transparency

?

J. Kaiser
AOSI
IVS-EOS Sommersemester 2008

Types of distributed operating systems
Network operating systems: basic support for communication between

homogeneous local OS, individual computing nodes
are visible
Examples: Windows NT, UNIX, Linux,

 distributed file systems (NFS)

Distributed operating systems: transparent IPC mechanism, no difference between
local and remote interaction, unified name space,
integrated file system, unified user admin and
protection/security mechanisms.
Examples: Amoeba, Emerald, Chorus, Clouds

Middleware: builds on top of heterogeneous local OS, provides
unified programming model, communication and
cooperation mechanisms, maintains autonomy of local
nodes but supports transparent access to shared
resources.
Examples: CORBA, Java RMI, .NET, DCE

J. Kaiser
AOSI
IVS-EOS Sommersemester 2008

Types of middleware

Document-based middleware: Documents which contain (hyper-) links to
model: distributed data other documents.

Examples: World-Wide-Web

File-based middleware: Transparent access to remote files.
model: distributed data Examples: Andrew File System, NFS

Object-based middleware: Transparent invocation of remote objects.
model: distrib. functions Examples: CORBA, DCOM(windows only)

Coordination-based middleware: Coordination through a shared information space.
model: distrib. functions Examples: Linda, Java Spaces, Lime

Service-based middleware: Discovery and use of remote services.
model: distrib. functions Examples: Jini, JXTA, UPnP

J. Kaiser
AOSI
IVS-EOS Sommersemester 2008

Shared Data Spaces

Immutable Data Storage:

no write operation!

"out" always adds a data element to the storage

destructive "in" and non-destructive "read"

consistency is preserved by ordering accesses

examples: Linda, JavaSpaces

J. Kaiser
AOSI
IVS-EOS Sommersemester 2008

An example of a JINI service

J. Kaiser
AOSI
IVS-EOS Sommersemester 2008

5. Using a Service
4. Lookup

?

2. Join - Service Registration

3. Discovery - Finding Lookup Services

Lookup
Service

Client

site 1 site 2 site 3

network

Service
ID

1. Discovery - Finding Lookup Services

J. Kaiser
AOSI
IVS-EOS Sommersemester 2008

Lookup
Service

Look-Ahead
Service

Look-
Ahead
Agent

The Demo Scenario: A proactive car-to-car
service

J. Kaiser
AOSI
IVS-EOS Sommersemester 2008

Camera

Jini Lookup Service

Navigation system
- position
- direction
- speed

Jini Lookup Service

Look-Ahead
Service Proxy

Location
Service Proxy

Location
Service Proxy

Display
Service Proxy

Look-Ahead Service Proxy

Display

Location
Service

Location
Service

Display
Service

Camera-
Driver

Java Media
Framework

Look-Ahead
Service

cartruck

Location
Service Proxy

Display
Service Proxy

Location
Service Proxy

Ev
en

ts
/L

ea
si

ng
(R

M
I)

Ev
en

ts
/L

ea
si

ng
(R

M
I)

RTP

RMI

User
Agent

User
Profile

Navigation system
- position
- direction
- speed

J. Kaiser
AOSI
IVS-EOS Sommersemester 2008

Object: Incarnation of an abstract data type (characeristics of o-o: class,
inheritance, polymorphism)

Component: encapsulated unit of functionality and deployment that interact with
other components only via well defined interfaces.
- Interfaces: defining sets of operations and the associated data types.
- Receptacles: special (required) interfaces that explicitly define the dependencies
 on other components. On deployment this describes which other components must
 be present.
- Binding: association between one single interface and one single receptacle.
- Capsule: container providing the run-time API, e.g. a process

Programming models

J. Kaiser
AOSI
IVS-EOS Sommersemester 2008

An object is a unit of instantiation; it has a unique identity.
An object has state; this state can be persistent state.
An object encapsulates its state and behavior.

Clemens Szyperski, Component Software, ACM Press/Addison-Wesley, England, (1998).

 A software component is a unit of composition with contractually specified
interfaces and explicit context dependencies only. A software component
can be deployed independently and is subject to composition by third
parties.

A component is a unit of independent deployment.
A component is a unit of third-party composition.
A component has no persistent state.

Programming models

J. Kaiser
AOSI
IVS-EOS Sommersemester 2008

Service:

"a mechanism to enable access to one or more capablities, where access is
provided using a prescribed interface and is exercised consistently with
the constraints and policies as specified by the service description."
(OASIS)

"a software system designed to support interoperable machine-to-machine
interaction over a network. It has an interface described in a machine-
processable format." (W3C)

What is a service?

Programming models

J. Kaiser
AOSI
IVS-EOS Sommersemester 2008

- A service can be used as an independent and self-contained entity.
- A service is available within a network.
- Every service has a published interface that is sufficient to use the

service.
- The use of services is platform and language independent.
- A service is registered in some directory.
- Binding to a services is dynamic. At design time of an application

existence of a respective service is not required. It will be
discovered and used dynamically.

Properties of a service

J. Kaiser
AOSI
IVS-EOS Sommersemester 2008

.. components [that] are concurrent objects that communicate
via messaging, rather than abstract data structures that interact
via procedure calls. ... We call them actor-oriented languages....
Actor-oriented languages, like object-oriented languages, are
about modularity of software.

Edward A. Lee, UCB, 2004

The term “actors” was introduced in the 1970’s by Carl Hewitt of MIT to describe
autonomous reasoning agents.

The term evolved through the work of Gul Agha and others to refer to a family of
concurrent models of computation, irrespective of whether they were being used
to realize autonomous reasoning agents.

Programming models
Actors and Agents

J. Kaiser
AOSI
IVS-EOS Sommersemester 2008

Programming models

Actors are complex, physical, possibly distributed architectural objects that interact
with their surroundings through one or more signal-based boundary objects called
ports.

A port is a physical part of the implementation of a actor that mediates the
interaction of the actor with the outside world. It is an object that implements a
specific interface.

Bran Selic, ObjecTime Limited, Jim Rumbaugh, Rational Software Corporation: "Using UML for Modeling Complex Real-
Time Systems, March 11, 1998

J. Kaiser
AOSI
IVS-EOS Sommersemester 2008

Actor orientation:
actor name

data (state)

ports

Input data

parameters

 Output data

What flows through
an actor is streams

of data

class name

data

methods

call return

What flows through
an object is

sequential control

Object orientation:

Objects vs. Actors
Edward A. Lee, UCB, 2004

J. Kaiser
AOSI
IVS-EOS Sommersemester 2008

Actors and Agents

Properies of Agents:

- Activity: an agent is an actor
- Automomy: agents behave according a plan
- Social behaviour: ability to communicate (with humans)
- Reactivity: an agent reacts on perceived events
- Proactivity: agents are able to take initiative

J. Kaiser
AOSI
IVS-EOS Sommersemester 2008

"Agents are autonomous, computational entitities that can be viewed as
perceiving their environment through sensors and acting upon their
environment through effectors. To say that agents are computational
entities simply means that they physically exist in the form of
programs that run on computing devices. To say that they are
autonomous means that to some extent they have control over their
behavior and can act without the intervention of humans and other
systems. Agents pursue goals or carry out tasks in order to meet their
design objectives, and in general these goals and tasks can be
suplementary as well as conflicting." (Gerhard Weiß)

Actors and Agents

J. Kaiser
AOSI
IVS-EOS Sommersemester 2008

....will be continued

