
J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

IPC
Inter Process Communication

Operating Systems II

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

Principles of distributed computations
Explicit communication via send and receive: Message passing.

comm.
network

send

PP

P
P

queue

process
Distributed
Processes

Problem: very low level, very general, poorly defined semantics of communication

P

send.

receive receive

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

Principles of distributed computations
Function shipping initiates computations in a remote processing entity.
Example: Remote Procedure call.

comm.
network

call
proc.

call
proc. PP

P
P

memory

process
Distributed
Processes

Problem: computation bottlenecks, more complex programming model, references.

P

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

Principles of distributed computations

DSM (Data shipping) maintains the read/write semantics of memory

comm.
network

read

write

read

write

read

write

read

write
PP

P
P

memory

process
Distributed
Shared
Memory

Problem: Consistency in the presence of concurrency and communcation delays

read

write
P

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

abstractions for communication

Message passing

Remote Procedure Call

Remote Object Invocation

Distributed shared memory

Notifications

Publish Subscribe

Shared data spaces

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

abstractions for communication

Space Coupling: References must be known
Explicit specification of the destination, i.e. producer must know where to send
the message. Message contains an ID specifying an address or name.

Coupling in time: Both sides must be active
Communication can only take place if all partners are up and active.

Flow coupling: Control transfer with communication
Defines whether there is a control transfer coupled with a message transfer.
E.g. if the sender blocks until a message is correctly received.

Dimensions of Dependencies:

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

Message passing

producer abstraction consumer interface thread

logical channel

Notation acc. P. Eugster: Type-Based
Publish Subscribe, PhD-thesis, EPFL,
Nr. 2503, 2001

*

*

primitives: send (), receive ()

Coupling: time, space, flow

Connected socket, e.g. TCP

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

Message passing

primitives: send (), receive ()

Coupling: time, space, (flow? unsuccessful if flow is not coordinated)

Unconnected socket, e.g. UDP

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

Remote Procedure Call (RPC)

proxy, stub skeleton, dispatcher+stub

Coupling:
Space: destination is explicitely specified
Flow: blocks until message is delivered
Time: both sides must be active

Relation: one-to-one

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

Asynchronous RPC with pull

Variations of RPC

Asynchronous RPC with call-back

Coupling:
Space: destination is

explicitely specified
Flow: no flow coupling
Time: both sides must be active

Example: Concurrent Smalltalk

Example: Eiffel

Relation: one-to-one

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

Examles:
Java

Relation: one-to-many

Coupling:
Space: Yes (Observable/Observer pattern (delegation))
Flow: none
Time: both sides must be active (notification performed by RMI)

Notification

Observer/
listener

observable

registration

notification

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

logical
container

Relation: many-to-many

Coupling:
Space: none
Flow: none
Time: none

Examples:
Linda tuple Space
Java Spaces
ADS Data field

Shared Data Spaces

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

logical
channel

Publish/Subscribe

Relation: many-to-many

Coupling:
Space: none
Flow: none
Time: none

Examples:
Information Bus
NDDS
Real-Time P/S
COSMIC
....
....

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

What are the options?

message based

Remote procedure Call

Communication
relation

Routing
mechanism

Binding
Time

Distributed shared memory

Shared Data Spaces

Publish-Subscribe

symmetric address design time

client-server address design time

virt.
address

design/
run time

anonymous
contents run timeProducer-

consumer

contents/
subject

run time

Communication
abstraction

message

invocation

read/write on
memory cell

object,tupel

event

Communication
model

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

transport layer (TCP, UDP), IP

Basic request-reply protocol
marshalling and data representation

RMI and RPC

middleware
layers

applications, services
Programming model+
language
integration

basic OS
support
protocol
layer

device
layer Ethernet,Token-Bus, . . .

the lower layers of IPC

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

transport layer (TCP, UDP)

UDP: unconnected sockets, single messages
  datagramm coomunication

TCP: conn. sockets, two-way message streams
 between process pairs.
  stream communication

abstractions of the transport layer

receive send

OS-abstraction: socket
Protocols: TCP, UDP

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

sockets and ports

process process

How to route a message to a process?
- IP-Adress addresses a computer.
- Port: is associated with a process

Internet-addr.: 144.44.25.222 Internet-addr.: 144.44.25.223

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

Example: datagram sockets in Unix

s = socket(AF_INET, SOCK_DGRAM, 0)
.
.
bind (s, sender_address)
.
.
.
sento(s, message,L, receiver_address)

s = socket(AF_INET, SOCK_DGRAM, 0)
.
.
bind (s, receiver_address)
.
.
.
amount = recvfrom(s, buffer, from)

socket: system call to create a socket data structure and obtain the resp. descriptor
 AF_INET: communication domain as Internet domain
 SOCK-DGRAM: type of communication: datagram communication
 0: optional specification of the protocol. If “0“ is specified, the protocol is automatically

selected. Default: UDP for datagram comm., TCP for stream comm.
bind: system call to associate the socket “s“ with a (local) socket address <IP address, port number>.

sento: system call to send a bit stream at memory location "message" of length L via socket “s“ to the
specified server socket "receiver_address".

recfrom: system call to: receive a message from socket “s“ and put it at memory location “buffer“.
“from“ specifies the pointer to the data structure which contains the sending socket‘s address.
recvfrom takes the first element from a queue and blocks if the queue is empty.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

Example: stream sockets in Unix

s = socket(AF_INET, SOCK_STREAM, 0)
.
.
connect (s, server_address)
.
.
.
write(s, message, msg_length)

s = socket(AF_INET, SOCK_STREAM, 0)
.
bind(s, server_address);
listen(s,5);
.
sNew = accept(s, client_address);
.
n = read(sNew, buffer, amount)

SOCK_STREAM: type of communication: stream communication

listen: server waits for a connection request of a client. "5" specifies the max. number of requested connections
waiting for acceptance.

acccept: system call to accept a new connection and create a new dedicated socket for this connection.

connect: requests a connection with the specified server via the previously specified socket.

read/write: after the connection is established, write and read calls on the sockets can be used to send and receive
byte streams.
write forwards the byte stream to the underlying protocol and returns number of bytes sent successfully.
read receives a byte stream in the respective buffer and returns the number of received bytes.

Differences to the datagram communication interface:

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

Fault model and failure Semantics

S arbitrary
internal
faults

F

S has the failure semantics F

Problem:
For an application programmer
it would be extremely hard to
deal with arbitrary faults.

Approach:
System masks faults or maps
fault to a class which can be
handeled by a programmer
easily.

observable
 faults

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

Fault model and failure Semantics

Fault Class affects: description

fail stop process A process crashes and remains inactive.
All all participants safely detect this state.

crash process A process crashes and remains inactive.
Other processes amy not detect this state.

omission channel A message in the output message buffer of
one process never reaches the input message
buffer of the other process.

-send om. process A process completes the send but the respective
message is never written in its send output buffer.

-receive om. process A message is written in the input message buffer
of a process but never processed.

byzantine process or An arbitrary behaviour of process or channel.
channel

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

Fault model and failure Semantics

fail stop crash omission timing
(performance)

value byzantine

temporal domain only temporal + value domain

masking
mapping

resend, time-out, duplicate msg. recognition and removal,
check sum, replication, majority voting.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

Fault model and failure Semantics

Reliable 1-to-1 Communication:

Validity: every message which is sent (queued in the out-buffer of a
correct process) will eventually be received (queued in the
in-buffer of an correct process)

Integrity: the message received is identical with the message sent and
no message is delivered more than once.

Validity and integrity are properties of a channel!

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

Fault model and failure Semantics

UDP provides Channels with Omission Faults and doesn't guarantee any order.
TCP provides a Reliable FiFo-Ordered Point-to-Point Connection (Channel)

Mechanisms Effect

sequence numbers assigned to packets FiFo between sender and receiver.
Allows to detect duplicates.

acknowledge of packets Allows to detect missing packets on the
sender side and initiates retransmission

Checksum for data segments Allows detection of value failures.

Flow Control Receiver sends expected "window size"
characterizing the amount of data for
future transmissions together with ack.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

Distributed Objects and Remote Invocation

Transport Layer (TCP, UDP), IP

Basic Request-Reply Protocol

Marshalling and Data Representation

RPC and RMI

Middleware
Layers

Applications, Services
Programming Model+
Language
Integration

Basic OS
Support

Protocol
Layer

Device
Layer Ethernet,Token-Bus, . . .

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

Request-Reply Communication

doOperation getRequest
selectObject
executeMethod

request message
.
.

wait
.

continue

Client Server

R (request)

send replyreply message

RR (request-reply)

acknowledge messagereceive & ack.
discard history

RRA (request-reply-ack)

Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3
© Addison-Wesley Publishers 2000

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

public byte[] doOperation (RemoteObjectRef o, int methodId, byte[] arguments)
sends a request message to the remote object and returns the reply.
The arguments specify the remote object, the method to be invoked
and the arguments of that method.

public byte[] getRequest ();
acquires a client request via the server port.

public void sendReply (byte[] reply, InetAddress clientHost, int clientPort);
sends the reply message reply to the client at its Internet address and port.

Request-Reply Communication

Operations:

Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3
© Addison-Wesley Publishers 2000

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

messageType
requestId

objectReference
methodId
arguments

int (0=Request, 1= Reply)
int (process specific sequence number)

RemoteObjectRef
int or Method
array of bytes

message
structure

Internet address port number time object number interface of
remote object

32 bits 32 bits 32 bits 32 bitsremote
object
reference

Request-Reply Communication

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

Discussion: Fault Model of Request-Reply Communication

If the request-reply primitives are implemented on UDP sockets the
designer has to cope with the following problems:

Omissions may occur,
Send order and delivery order may be different.

Detection of lost (request or reply) messages

Mechanism: Timeout in the client
Request was processed in the server - (reply is late or lost).
Request was not processed - (request was lost).

Removal of duplicated request messages in the server:
New request arrives before the old request has been processed (no reply yet).
New request arrives after the reply was sent.

Semantics of "doOperation":
Idempotent operation: server simply (re-) executes operation.
Non-idempotent operation: server needs to maintain request history.

Removal of duplicated reply messages in the client.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

node 1 node 2 node 3

client
stub/
proxy

server
stub/
skeleton

Remote Procedure Call

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

RPC Semantics

client server
request

msg
X

timeout request
msg

reply
msg

client server
request

msg

timeout

request
msg

reply
msg

X

reply
msg
??

additional mechanisms needed to
deal with failures.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

client server
request

msg

timeout

request
msg

reply
msg

X

reply
msg
??

RPC Semantics

add 5

add 5

return
new value =
old value+10
 ??

add 5 to old value;
return new value;

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

RPC Semantics

client server
request

msg

timeout request
msg

reply
msg

slow server

?

add 5

add 5

add 5 to account;
return new value;

return value =
old value+5

return value =
old value+10

which to select?

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

client server
request

msg

timeout request
msg

reply
msg

server
ignores
request

sequence numbers
to identify request
messages.

RPC Semantics

Options:

idempotent operations

save call history

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

Goal: Achieve exactly once semantics ?

Approximates the semantics of a local procedure call.

A procedure is executed exactly once.

Very difficult to implement (efficiently) in the presence of network delays,
lost messages or server failures. Needs fault-tolerance and forward error
recovery.

RMI Invocation Semantics

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

Failures in an RPC

1.Client unable to locate the server

2. Request message lost

3. Server crashes after receiving the request

4 Reply message is lost

5. Client crashes after sending request

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

Example

Client sends request to the server to print a text

Server acknowledgement policies:
- Server sends an ack when request is received.
- Additionally, the server sends a completion message:

S1: when text has been sent to printer
S2: when text has been printed successfully

Server crashes, recovers and sends a message that it is up again.

Client reaction policies:
C1: client always re-issues request --> text may not be printed
C2: client never re-issues request --> text may not be printed
C3: client only re-issues if it received an ack for the print request
C4: client only re-issues if no ack

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

M: Completion message
P: Print
C: Crash

Possible Combinations:

M → P → C
M → C (→ P)
P → M → C
P → C (→ M)
C (→ P → M)
C (→ M → P)

Server policy
 M → P P → M
 MPC MC(P) C PMC PC(M) C
C1 DUP ✔ - DUP DUP ✔
C2 ✔ - - ✔ ✔ -
C3 DUP ✔ - DUP ✔ -
C4 ✔ - ✔ ✔ DUP ✔

 ✔: text printed once
 -: text never printed

Example

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

Bottom Line !

1.) Client can never know whether server
crashed before printing

2.) Possibility of independent client and server
crashes radically changes the nature of RPC
and clearly distinguishes single processor
systems from distributed systems.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

Orphans !

Client crashes before server reply

Policies:

- extermination
- reincarnation
- expiration

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

repeat filter execution invocation Comments
request duplicates of remote semantics

procedure

= 0 no #exec=1 exactly-once

= 0 no/n.a. #excec≤1 may be

≥ 0 no #exec≥1 at-least-once

≥ 0 yes #exec≤1 at-most-once

RMI Invocation Semantics

very difficult to
achieve, because of delays
and faults.

simple, but application
has to care about the cases
which did not succeed

simple, but application
has to prevent multiple
exec.+ duplicates

difficult to
achieve, needs extensive
fault-tolerance mechanism.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

Distributed Objects and Remote Invocation

Transport Layer (TCP, UDP), IP

Basic Request-Reply Protocol

Marshalling and Data Representation

RPC and RMI

Middleware
Layers

Applications, Services
Programming Model+
Language
Integration

Basic OS
Support

Protocol
Layer

Device
Layer Ethernet,Token-Bus, . . .

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

Route invocation to the target object.

Convert parameters into a compatible format.
Data Description
Marshalling ->External Data representation

invocation invocation
remote

invocation
remote

local
local

local
invocation

invocation
A B

C

D

E

F

Problems to solve

Enforce a well-defined invocation sematics wrt. faults.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

Remote {Method Invocation(RMI),Procedure Call (RPC)}

client

client
stub/
Proxy

comm.
module server

stub/
skeletondispatcher

handle
request-
reply

request

reply

call

return

server

obj. A
obj. B

call

ret.

req.
msg

reply
msg

req.
msg

reply
msg

select
method

provides:
 transp.
 local/remote
 invocation
 format
 compatibility

provides:
 transp.
 local/remote
 invocation
 format
 compatibility

remote
references
module

remote
references
module

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

client

server

proxy

implementation
 repository object

adapter

ORBORB

skeleton

client
 program

interface
 repository

Request

Reply
corecore for A

Servant
 A

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3
© Addison-Wesley Publishers 2000

Components in the CORBA RMI

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

Distributed Objects and Remote Invocation

Transport Layer (TCP, UDP), IP

Basic Request-Reply Protocol

Marshalling and Data Representation

RPC and RMI

Middleware
Layers

Applications, Services
Programming Model+
Language
Integration

Basic OS
Support

Protocol
Layer

Device
Layer Ethernet,Token-Bus, . . .

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

External Data Representation

sequence of bytes

messageserializiation

de-serialization

objects in (main) memory

Support for RPC and RMI requires for every data type which may be passed
as a parameter or a result:
1. it has to be converted into a "flat" structure (of elementary data types).
2. the elementary data types must be converted to a commonly agreed format.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

External Data Representation

Problems: multiple heterogeneous Hardware and OS Architecture

little/big endian data representation
different character encoding (ASCII, Unicode, EBCDIC)

multiple programming laguages

different representation and length of data types.

Solutions: Middleware defines common format for data representation and
Specific middleware versions for hardware/OS-platform conversion.

not practical for multiple programming languages

Definition of common data format and bindings to the specific
language.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

(Middleware-) defined by the respective platform which may run on
Platform Specific heterogeneous hardware and OS.
homogeneous
agree on the same example: XDR, CDR (byte-oriented)
formats and
representations

External Data Representation

Platform Independent independent data representation and description
heterogeneous
agree on a common example: XML (character-oriented)
way to describe the
formats and
representations

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

External Data Representation

Type Representation

sequence length (unsigned long) followed by elements in order
string length (unsigned long) followed by characters in order (can also

can have wide characters)
array array elements in order (no length specified because it is fixed)
struct in the order of declaration of the components
enumerated unsigned long (the values are specified by the order declared)
union type tag followed by the selected member

Corba CDR for Constructed Types

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

The flattened form represents a Person struct with value: {‘Smith’, ‘London’, 1934}

0–3
4–7
8–11
12–15
16–19
20-23
24–27

5

"Smit"
"h___"

 6
"Lond"
"on__"
1934

index in
sequence of bytes 4 bytes

notes
on representation
length of string

‘Smith’

length of string
‘London’

unsigned long

External Data Representation (Corba CDR)

CORBA CDR message

struct Person{
 string name;
 string place;
 long year;
};

CORBA IDL
description of the
data structure

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

Person 8-byte version # h0 3 int year
java.lang.

String
name:

java.lang.
String
place:

1934 5 Smith 6 London h1

• class name
• version number
• number, type and name of instance variables
• values of instance variables
• handles (serialized reference to an object)

public class Person implements Serializable {
private String name;
private String place;
private String year;
 public Person(String aName, String aPlace, String aYear) {

name= aName;
place=aPlace;
year= aYear;

}
// followed by the methods to access the instance variables
}

External Data Representation (Java)

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

eXternal Data Representation example SUN

const MAX = 1000;
typedef int FileIdentifier;
typedef int FilePointer;
typedef int Length;
struct Data {

int length;
char buffer[MAX];

};
struct writeargs {

FileIdentifier f;
FilePointer position;
Data data;

};

struct readargs {
FileIdentifier f;
FilePointer position;
Length length;

};

program FILEREADWRITE {
 version VERSION {

void WRITE(writeargs)=1;
Data READ(readargs)=2;

 }=2;
} = 9999;

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

<xs:element name="Event">
 <xs:complexType>
 <xs:sequence>

<xs:element name="Subject" type="xs:string" />
<xs:element name="SubjectUID" type="CODESID" />
<xs:element name="Description" type="xs:string" minOccurs="0" />
<xs:element ref="DataStructure" />
<xs:element ref="MayTrigger" minOccurs="0" />
<xs:element ref="WillTrigger" minOccurs="0" />

 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:simpleType name="CODESID">
 <xs:restriction base="xs:string">
 <xs:pattern value="0x[0-9A-Fa-f]{16}"/>
 </xs:restriction>
</xs:simpleType>

External Data Representation (P-independent)

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

Distributed Objects and Remote Invocation

Transport Layer (TCP, UDP), IP

Basic Request-Reply Protocol

Marshalling and Data Representation

RPC and RMI

Middleware
Layers

Applications, Services
Programming Model+
Language
Integration

Basic OS
Support

Protocol
Layer

Device
Layer Ethernet,Token-Bus, . . .

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

Distributed Objects and Remote Invocation

Module: --> Interface specifies procedures and variables.

Service Interface: specifies the procedures of a server including arguments
and return values.

Remote Interface: Like service interface.
Difference: - Objects can be passed as arguments to methods.

- Objects can be returned as results.
- Object references can be passed as parameters.

Modules: --> No direct access to instance variables possible
--> Access only via procedure interface.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

Corba Event Service

logical
event
channel

producer consumer

register

notify

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

consumersupplier proxy consumer

notification

proxy supplier
event channel

notification

synchroner
RMI

synchroner
RMI

Asynchronous, anonymous event transfer from the supplier to the consumer.

push supplier, push consumer: supplier originated event transfer.
pull supplier, pull consumer: consumer originated event transfer.

Corba Event Service

supplier

notification

consumer

notification

notification

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

Corba Event Service

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

Limitations of the event channel:

1. supports no event filtering capability, and
2. no ability to be configured to support different qualities
 of service.

Corba Event Service

The Notification Service enhances the Event Service by introducing the concepts
of filtering, and configurability according to various quality of service requirements.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

Corba Notification Service

extends event service by:

consumers can define filter objects to define which events they
are interested in.

quality properties of a channel can be configured, e.g. reliability
properties or order preferences like FIFO or priorities.

consumer can detect event types which are advertised by producers.

producers can discover interests of the consumers

optional event-type repository allows access to event structures.
Supports definition of filter contraints.

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

Corba Notification
Service

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

Corba Notification Service

Structured Event:

event header event body

domain
name

type
name

event
name

optional
h-field(s)

filterable body fields rest

health patient heartbeat priority ring blood respiration rest
care supervision low alarm 10 alarm pressure

22.06.06
9:30

Example:

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

fd: filterable data
ohf: optional header field

The structure of a Structured Event

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

event:= <subject, funct_attr, extra-funct_attr, contents>

event_channel:= <subject, extra-funct_attribute_list>

COSMIC Communication Abstractions: Events
events: abstraction defining an individual occurence of an event

treat events as time/value entities
allow to describe context and quality attributes
exploit event attributes by multi-level filtering

event abstraction of the infrastructure, i.e. explicit specification of
channels: the channel through which the events are disseminated

provide dissemination guarantees
support different synchrony classes
encapsulate network configuration functions

distance_event:= <UID, rel_pos., abs_pos., netw_zone, timestamp, validity, distance>
crash_event:= <UID, abs_pos., netw_zone,timestamp, validity, acceleration>

example:

distance_channel:= <UID, periodic soft real-time, period, omission degree, not_h, exc_h>
crash_channel:= <UID, periodic hard real-time, reaction_time, omission degree, exc_h>

example:

J. Kaiser
BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

Client-Sever Relation is the most common
form of IPC

RPC e.g. for remote file access
CORBA and Java RMI

Peer-to-Peer Relation is the (next?) big step
towards more scalable systems

Event and Notification Services

Middleware for IPC in DS

