Distributed
File Systems

BS II: Distributed Operating Systems i
IVS-EOS Sommersemester 2008 J. Kaiser

-Distributing data over multiple disks
- higher disk access bandwidth
- higher reliability

RAID: Reliable Array of Inexpensive Disks

-Distributing file access across multiple nodes
- single homogeneous large file system

NFS: Network File System
AFS: Andrew File System

RAID: Reliable Array of Inexpensive Disks

D.A. Patterson, G.A. Gibson, R. Katz: A Case for Redundand Arrays of
Inexpensive Disks (RAID), Proc. ACM SIGMOD Intern. Conference on

Management of Data, 1988

Goals:

Performance Improvement: parallel disks can be accessed concurrently.
Reliability and availability: RAID exploits redundancy of disks.
Transparency: RAID looks like a single large, fast and reliable disk (SLED).

% BS II: Distributed Operating Systems ‘
s =9 IVS-EOS Sommersemester 2008 J. Kaiser

RAID-level 1

stripe O stripe 1 stripe 2 stripe 3
stripe 4 stripe 5 stripe 6 stripe 7
stripe 8 stripe 9 stripe 10 stripe 11
stripe 12 stripe 13 stripe 14 stripe 15

__

RAID-level O

non-redundant

stripe O stripe 1 stripe 2 stripe 3
stripe 4 stripe 5 stripe 6 stripe 7
stripe 8 stripe 9 stripe 10 stripe 11
stripe 12 stripe 13 stripe 14 stripe 15

__

RAID-level 1

mirrored disk

high transfer rates high transfer rates

RAID-level 2

Needs strictly synchronized disks!

Hamming code

__

RAID-level 2

word- or byte-oriented

BS II: Distributed Operating Systems i
IVS-EOS Sommersemester 2008 J. Kaiser

RAID-level 2

Needs strictly synchronized disks!

__

RAID-level 2

word- or byte-oriented

BS II: Distributed Operating Systems i
IVS-EOS Sommersemester 2008 J. Kaiser

RAID-level 3

Needs strictly synchronized disks!

__

RAID-level 3

word- or byte-oriented

Allows error correction in case of a defective disk because the positon of the
defective bit is known !

BS II: Distributed Operating Systems i
IVS-EOS Sommersemester 2008 J. Kaiser

RAID-level 4

stripe O stripe 1 stripe 2 stripe 3 P(0-3)
stripe 4 stripe 5 stripe 6 stripe 7 P(4-7)
stripe 8 stripe 9 stripe 10 stripe 11 P(8-11)
stripe 12 stripe 13 stripe 14 stripe 15 P(12-14)
Xo(i) X, (i) X(i) @i Pos()
111) (AT (I >
k bits k bits k bits k bits,| .k P!&"WS

Po-3(i) = X3(1) @ X,()) © X,(i) ® Xi)

P'o_3(1) = X5(i) @ X',(i) @ Xy (i) ® X,(i)

P'o-3(i) = X5(i) @ X',(i) @ X,(i) @ Xo(i) ® X, (i) @ X,(i)
P'o_3(i) = Po_3(i) @ X',(i) @ X,(i)

=)

starting point
changing stripe 2

A write operation requires 2 reads and 2 writes

RAID-level 5

Problem with RAID-4: Parity disk becomes a bottleneck.

stripe O stripe 1 stripe 2 stripe 3 P(0-3)
stripe 4 stripe 5 stripe 6 P(4-7) stripe 7
stripe 8 stripe 9 P(8-11) stripe 10 stripe 11
stripe 12 P(12-14) stripe 13 stripe 14 stripe 15
P(15-19) stripe 16 stripe 17 stripe 18 stripe 19
RAID-level 5
Block parity

Raid-level 6 tolerates two disk crashes and guarantees a very high availability

of data. Needs N+2 disks and has to write 2 Parity blocks on a write operation.

IVS-EOS

BS II: Distributed Operating Systems
Sommersemester 2008

J. Kaiser

Requirements for Distributed File Systems

Transparencies (access, location, mobilty, performance, scalability)
Concurrent File Update

Replication of Files

Openess (Heterogeneity of OS and Hardware)

Fault-Tolerance

Consistency

Security

13338081838

Efficiency

“% BS II: Distributed Operating Systems .
g IVS-EOS Sommersemester 2008 J. Kaiser

Early milestones in distributed file systems

m) D.R. Brownsbridge, L.F. Marshall, B. Randell: "The Newcastle Connection or
UNIXes of the World Unitel", Software-Practice and Experience, Vol.12, 1147-
1162, 1982

m) B. Walker, 6. Propek, R. English, C. Kline, and 6. Thiel (UCLA)
The LOCUS Distributed Operating System
Proceedings of the Ninth ACM Symposium on Operating Systems
Principles, October 10-13, 1983, pages. 49-70

=9 R. Sandberg, D. Goldberg, S. Kleinman, D. Walsh) first
The Design and Implementation of the SUN Network File System > commercial
Proceedings Usenix Conference, Portland, Oregon 1985 system

~

m) J. Morris, M. Satyanarayanan, M.H. Conner, J.H. Howard, D.S. Rosenthal, F.D. Smith
Andrew: A distributed personal computing environment
Comm. of the ACM, Vol.29, No. 3, 1986

AFS inspired the development of the "Distributed Computing Environment (DCE)"

First Approaches: The Newcastle Connection

IVS-EOS

SOFTWARE-PRACTICE AND EXPERIENCE. VOL. 12. 1147-1162 (1982)

The Newcastle Connection

or

D. R. BROWNEBRIDGE, L. F. MARSHALL AND B. RANDELL
Computing Laboratory, The University, Newcastle upon Tyne NEI1 7RU, England
SUMMARY

In this paper we describe a software subsystem that can be added to each of a set of physically
interconnected UNIX or UNIX look-alike systems, so as to construct a distributed system which is
functionally indistinguishable at both the user and the program level from a conventional single-
processor UNIX system. The fechniques used are applicable to a variety and multiplicity of both local
and wide area networks, and enable all issnes of inter-processor communication, network protocols, etc.,
to be hidden. A brief account is given of experience with such a distributed system, which is currently
operational on a set of PDP11s connected by a Cambridge Ring. The final sections compare our scheme
to various precursor schemes and discuss its potential relevance to other operating systems.

BS II: Distributed Operating Systems

Sommersemester 2008

J. Kaiser

First Approaches: The Newcastle Connection

Principles:
- Extending the hierachical Unix Naming Scheme by a "Super Root",
- Using RPC to perform remote file access

, //.
/N e

unix 1 unix 2 //\

EE CS ME

N\

unix 1 unix 2
‘£ BS IIL: Distributed Operating Systems .
g IVS-EOS Sommersemester 2008 J. Kaiser

Distributed File Systems

Newcastle connection provides a single name space for files.

Problems with the Newcastle Connection:
No Location transparency

No Replication or Chaching

No Mobility Transparency

“’" BS II: Distributed Operating Systems i
% x g IVS-EOS Sommersemester 2008 J. Kaiser

Distributed File Systems

Naming distinguishes between:
- User-Level Names e.g. UNIX path names (structured ns)

- Unique File Identifiers (UFID) System-wide unambiguous number (flat ns)

- Hierarchical naming system is established using (flat) file
system UIDs (UFID), and a directory service.

- UFIDs support location transparency.

Network File Service (NFS) Architecture

* location transparency

- migration transparency

* robustness against client and server faults

Client-Server Architectures

client server

system calls system calls

virtual file system

virtual file system

local FS local FS
in.'.er.face NFS Clien'l' NFS Clien'l' in.'.er.face
RPC client RPC client
stub stub

T

_ D

NFS: File Service Architecture

DS retrieves

Client Computer Server Computer

client requests UFID UFID
presenting the text name
app. app. DS provides directory service
progr. progr. UFID DS interface
conv. file sys.interface flat FS interface
= network
A/ . .
- flat file service
client module =

(NFS client)
client accesses files
via their UFID

m) Client-Server architecture using SUN RPC
m) Flat FS uses Unique File IDs (UFIDs) instead of hierarchical path names

=) DS associates file text names with Unique File IDs (UFID)

BS II: Distributed Operating Systems i
IVS-EOS Sommersemester 2008 J. Kaiser

Flat File Service Operations

Read (Fileld, i,n) — Data

- throws BadPosition

Write (Fileld, i,n) — Data

- throws BadPosition

Create() — Fileld

Delete(Fileld)

GetAttributes(Fileld)— Attr

SetAttributes(Fileld, Attr)

If I=si < Length(File): Reads a sequence of up to n items

from a file starting at item i and returns it in Data

If Isi < Length(File)+1: Writes a sequence of Data to a

file starting at item i, extending the file if necessary

Creates a new file of length 0 and delivers a UFID for it.

Removes a file from the file store.

Returns the file attributes for the file.

Sets the file attributes for the file (except owner, type and ACL).

Directory Service Operations

Lookup (Dir, Name) — Fileld
- throws NotFound

AddName (Dir, Name, File)

- throws NameDuplicate

UnName (Dir, Name)

- throws NotFound

GetNames (Dir, Pattern) — NameSeq

Locates the text name in the directory and returns the respective

UFID. If Name is not found, an exception is raised.

If Name is not in the directory, adds (Name, File) to the directory
and updates the file's attribute record. Throws and exception if

Name is already in the directory.

If Name is in the directory it is removed.

If Name is not in the directory an exception is raised.

Return all the text names in the directory that match the regular

expresssion Pattern.

Differences to the Unix File System API

Stateless File Server:
® no state information about open file
@ no information about the number and state of clients
=) every request must be self-contained.

Benefit: A client or a server crash does not
require extensive recovery activities.

- no open or close
- operations are idempotent except “create”

““ BS II: Distributed Operating Systems
% g IVS-EOS Sommersemester 2008

J. Kaiser

Recall: file allocation in Unix

file descriptor

tables ' -node
- act. file pos.| |/
=—RIW fi
father - pointer to ile
I-node information
- act. file pos. Unix file system remembers which
:_I;ther to a?;l_refses files are open and the position of
i-node orhirs the last file access!
10 blocks |
: N : :
child . Strvells e read and write NOT idempotent!
double indir.
triple indir.
BS II: Distributed Operating Systems T
. Kaiser

IVS-EOS Sommersemester 2008

SUN NFS Architecture

Client Computer Server Computer
app. app.
progr. progr.

iUnix sys callsi

virtual file sys. VFS m
: network
/

NFS protocol (RPC) :> N[

\
FS || Fs |REIELL =)_/\/ SErver FS

< =

File

Handle FS-Id i-node # |i-node gen.#

BS II: Distributed Operating Systems i
IVS-EOS Sommersemester 2008 J. Kaiser

NFS File Handle

File Handle FS-Id i-node # |i-node gen.#
E‘ > | >§< >
NFSv2: 32 Byte ' i |
NFSv3: 64 Byte | File local . sequence
NFSv4: 128 Byte . server i-node | number
unique in will be ensures
the system! re-used | uniqueness

The File Handle enables file access to any file in the distributed file system
without looking it up in the name server.

How to obtain a file handle in a remote file system subtree?

Recall (BS I): Modern Unix-Kernel (Vahalia 1996)

coff

SVR4

virtual
memory
mgmt.

vnode/
vfs-interface

support
services

block
devices

timesharing
scheduler

. processes
dl?k framework
drivers
tape \ system
drivers processes

network drivers tty-drivers

BS II: Distributed Operating Systems i
IVS-EOS Sommersemester 2008 J. Kaiser

NFS mount service

server A

/

university

/ b

NN

otto ernst mechthild

client

/

vmunix Uusr

mount
externally

IVS-EOS

server B

mount
externally

/

/

BS II: Distributed Operating Systems

Sommersemester 2008

\ 7

mount point

users

ATIN

\

fritz anna ulla

J. Kaiser

NFS mount service

Hard-Mounted: requesting application-level service blocks until the request
is serviced. Server crashes and subsequent recovery is
transparent for the application process.

Soft-Mounted: if the request cannot be serviced, the NFS client module
signals an error condition to the application.

Soft-Mounting needs a meaningful reaction of the application process. In most
cases the transparency of the hard-mounting is preferred.

BS II: Distributed Operating Systems i
IVS-EOS Sommersemester 2008 J. Kaiser

NFS mount service

Mount Service Process: executed on every server

Data Structures:

Server: etc/exports

contains names of local FS which may be mounted ext.

For every file system a list of names of (client) hosts is

associated which are allowed to mount the FS.

mount request

(RPC) < host name,
dir name remote,
path name local>

=

remote mount service

checks whether allowed

returns <IP addr., port #, file handle>

BS II: Distributed Operating Systems
IVS-EOS Sommersemester 2008

J. Kaiser

NFS Server Caching

Standard Unix FS mechanisms
- buffer cache
- read ahead
- delayed write
- sync (periods of 30 sec)

Additionally: Two options for write (NFS version 3)
1) Data from clients is written to the buffer cache AND the disk
(write through). = Data is persistent when RPC returns.
2.) Data will be held in the cache only. Explicit commit-operation makes
data persistent. Default mode for Standard NFS clients. Commit
is issued when closing a file.

BS II: Distributed Operating Systems i
IVS-EOS Sommersemester 2008 J. Kaiser

NFS Client Caching

clients READ:

all reads in an interval of

. Kk r/w|
server disk bloc At after chaching only go
(8kb) X to the cache. Reads occuring
Fw after that time check the

validity of the copy with the
"lease" concept

server. If still valid they may
use it another At.

t. : timestamp last checked

t., : time stamp last modified WRITE:

At : validity interval: 3-30 sec for files cached locally until a snyc

30-60 sec for dir of the client or if file is

Validity condition for cache entry at time t: closed.

(t-t, <AVt ciont =t corver) Mechanism only approximates

— , 1-Copy-Consistency !
BS II: Distributed Operating Systems i
IVS-EOS Sommersemester 2008 J. Kaiser

Dealing with shared Files

Unix Semantics: Every operation is instantaneously visible to all processes.

Session Semantics: No changes are visible to other processes until the file is closed.
Immutable files: No updates possible. On update a new file is created.
Transactions: All changes are atomic

Locking Files

Operation Description

Lock Create a lock for a range of bytes

Lockt Test whether a conflicting lock has been created
LockU Remove a lock from a range of bytes

Renew Renew the lease on a specified block

"Share reservations"

weak form of type-specific access request

requested | Current file denial state
access none read write both
read succeed | fail succeed| fail
write succeed | succeed | fail fail
both succeed | fail fail fail
current | Requested file denial state
access none read write both
read succeed | fail succeed| fail
write succeed | succeed | fail fail
both succeed | fail fail fail

NFS Properties

Access Transparency
Location Transparency
Migration Transparency
Scalability

File Replication
Heterogeneity
Fault-Tolerance
Consistency

Security

Efficiency

++

++

only read replication

available for many platforms
stateless, restricted fault model
"almost" one copy

needs additions (e.g. Cerberos)

Network File System (NFS) version 4 Protocol

http://www.ietf.org/rfc/rfc3530.txt

New features of NFSv4

* NFSv4 introduces state. NFSv4 is a stateful protocol unlike
NFSv2 or NFSv3.

* NFSv4 introduces file delegation. An NFSv4 server can enable
an NFSv4 client to access and modify a file in its cache without
sending any network requests to the server.

* NFSv4 uses compound remote procedure calls(RPCs) to reduce
network traffic. An NFSv4 client can combine several traditional NFS

operations (LOOKUP, OPEN, and READ) into a single compound RPC request
to carry out a complex operation in one network round trip.

* NFSv4 specifies a number of sophisticated security mechanisms
including Kerberosb and Access Control Lists.

* NFSv4 can seamlessly coexist with NFSv3 and NFSv2 clients and servers.

Compound RPCs in NFS

NFS V3 NFS V4

client server client server

lookup lookup
/ open
Q read
. read /
/_

NFS V4 Compound (mount) Request

.Ei'.':"" nfernand@nf734153:/pdfsDZ6,/simple2

1 Network File 3vstem
2 FProgram Version: 4
3 V4 Procedure: COMPOUND (1)
4 Tag: mount <—————_N_______‘_‘-—“-‘
o length: 12
& contents: mount
7 minorversion: O header info
a8 Dperations [(count: 5
= Opcode: PUTEOOTFH (24)
10 COpoode: GETFH (10)
11 Opocode: LOOEDTER [(15)
1:
13 ..
14 COpoode: GETFH (10)
15 Opcode: GETATTE (9)
16 attrmask
17 mand attr: FATTR4 SUPPORTED ATTES
15 mand attr: FATTR4 TYPE [1)]
19
20

mount request

()

=10 x|

Jf" nfernand@nf734153:/pdfs026/simplez

WO -1 monode L D

(T T U T T U I T T T T T T O T U
O w oo -1 o N o @M P2 OW oo -] on & @M= 2 O

Network File 3vstem
FProgram Version: 4
Vi Procedure: COMPOUND (1)
Status: NFS54 0K (0)
Tag: mount (mount) Reply
length: 12
Ccontents: mount
Operations [(count: 5)
COpoode: PUTROOTFH (24)
Status: NF34 0K (0]
Opoode: GETFH [(10)
Status: NFs54 0K (0]

Dpocode: LOOETP [(15)
statuz: NFS4 0K (0]

Opoode: GETFH [(10)
Status: NFs34 0K (0]

Dpocode: GETATTR (2]
statuz: NFS4 OK (0]
ob]j attributes
attrmask
mand attr: FATTR4 SUPPORTED ATTRI (0]
attrmask

mand attr: FATTR4 SUPPORTED ATTRIS (0)
mand attr: FATTR4 TYPE (1]

NFS V4 setclientid Request

f" nfernand@nf734153:/pdfsD26,/simple2

Program Version: 4
Vi Frocedure: COMPOUND [1)
Tagy: setclientid
length: 12
content=s: setclientid
Operations [(count: 1)
COpoode: SETCLIENTID (35)
client

callback
ch program: Ox00000000

cb_lucatiun

callhack_ident: Dx000aoaos

NFS V4 setclientid Reply

J;-f"" nfernand@nf734153:/pdfs026/simplez

W0 o0 -1 m N s DD

H = e
L2 = O

Network File 3vstem

Program Version: 4
V4 Procedure: COMPOUND (1)
Status: NF34 0K (0]
Tag: setclientid
length: 12
contents: sSetclientid
Operations [(count: 1)
Opcode: SETCLIENTID (35)
status: WNFS34 0K (0]
clientid: O0x4457450L500000066

=10l x|

NFS V4 Open Request

#* hpdfs026

1 DHNetwork File 3vyvstem

2 FProgram Version: 4
3 V4 Procedure: COMPOUND (1)
4 Tag: open
o length: 12
B contents: open
7 minorversion: 0O
a Dperations [(count: 4]
= Opocode: PUTFH (22)
10
11 .
12 Opoode: OPEN [(15)
13 Seqgid: O0xO00000001
14 share access: OPEN4 SHARE ACCESS BOTH (3)
15 share deny: OPEN4 SHARE DENY NONE (0)
16 clientid: O0x44574S5hS00000066
17
15 .
13 Opocode: GETFH (10)
20 Opoode: GETATTRE (9)

[~
=

NFS V4 Open Reply

#* hpdfsD26

1 HNetwork File 3ystem

2 Frogram Version: 4

3 V4 Procedure: COMPOUND (1)

4 Status: NF34 OE (0]

5 Tag: open

B length: 12

7 contents: open

i Operations [(count: 4)

= Opoode: PUTFH [(22)

10 Status: NF34 OE (0]
11 Opoode: OPEMN [(15)

12 Status: NF34 OE (0]
13 Stateid

14 segid: OxO0000001
15 other: 44DLZAE4O00000e500000000
16 . a .

17 COpoode: GETFH (10)

1= Status: NF34 OE (0]
15 . a .
a0 Opoode: GETATTE (9]
21 Status: NF34 OE (0]

-2
-2

=10l x|

Operation v3 v4 Beschreibung

Create Ja Nein Erstellen einer regularen Datei

Create Nein | Ja Erstellen einer irregularen Datei

Link Ja Ja Erstellen einer direkten Verkntpfung zu einer Datei

Symlink | Ja Nein Erstellen einer symbolischen Verknupfung zu einer Datei

Mkdir Ja Nein Erstellen eines Unterverzeichnisses in einem gegebenen Verzeichnis
Mknod Ja Nein Erstellen einer Spezialdatei

Rename | Ja Ja Andern einer Dateibezeichnung

Remove | Ja Ja Entfernen einer Datei aus einem Dateisystem

Rmdir Ja Nein Entfernen eines leeren Unterverzeichnisses aus einem Verzeichnis
Open Nein | Ja Offnen einer Datei

Close Nein | Ja Schlie3en einer Datei

Lookup Ja Ja Suchen einer Datei anhand ihrer Bezeichnung

Readdir | Ja Ja Lesen der Eintrage eines Verzeichnisses

Readlink | Ja Ja Auslesen der in einer symbolischen Verknupfung gespeicherten Pfadangabe
Getattr Ja Ja Auslesen der Attributwerte einer Datei

Setattr Ja Ja Setzen eines oder mehrerer Attributwerte fur eine Datei

Read Ja Ja Auslesen der in einer Datei enthaltenen Daten

Write Ja Ja Schreiben von Daten in eine Datei

NI
S >

Tanenbaum, Steen: Verteilte Systeme, Pearson >Studium 2008

AFS Andrew File System

Scalability as primary design goal.
As much as possible local accesses to files.

Any accessed file is completely transferred to the client.

Files stored persistently on local disc cache.
Large files are transfered in large chunks (64 kB).
Active notification mechanisms to approximate one-copy consistency.

“’" BS II: Distributed Operating Systems i
% x g IVS-EOS Sommersemester 2008 J. Kaiser

AFS Architecture

Workstations Servers
\~UserVenus\
. program Vice
local persistent [UNIXkernel |
"file caches", == T onix komel]
survive crashes
§_UserVenus\ Network = as =
of local system. \program
lNX kernel |
. Vice
Unix kernel traps FS
. Venus
accesses and redirects ~lser ™~
program | UNIXkemel |
: UI\NX kernel |
requests to remote files ! = = =

to a Venus Process.

Files are organized in migratable "Volumes" (smaller entities compared to file systems in NFS).
Flat File Service, hierarchical view is established by the Venus Processes
Every File has a unique 96-Bit ID (fid). Path names are translated in fids by Venus processes.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3

© Addison-Wesley Publishers 2000

AFS: Basis Consistency Mechanism

Consistency mechanism is based on "Callback Promises".

AFS relies on a notification concept. Callbacks are RPCs to the respective
remote Venus processes with a Callback Promise Token as parameter.

A Callback Promise Token may have the values:
- valid

- cancelled

The Server is responsible to invoke the respective remote Venus process when
a file was modified with the value "cancelled".

A subsequent local "read" or "open" on the client must request a new file copy.

AFS: file system calls

User process UNIX kernel Venus Net Vice
open(FileName, If FileName refers to a
o) If)l;isnt‘hihﬁ‘;gﬁefget i 1Check list of files in
Venus. ocal cache. If not
present or there is no
valid callback promise,
send a request for the
file to the Vice server
that is custodian of the
volume containing the T—®Transfer a copy of the
file. file and a callback
promiseto the
workstation. Log the
Place the copy of the Y@]callback promise.
file in the local file
Open the local file and | System, enter its local
return the file name in the local cache
descriptor to the list and return the local
application. name to UNIX.
read(FileDescriptor, |Perform a normal
Buffer, length) | UNIX read operation
on the local copy.
write(FileDescriptor, | Perform a normal
Buffer, length) | UNIX write operation
on the local copy.
close(FileDescriptor) | Close the local copy
and notify Venus that If the local h
the file has been closed.| 11 the local copy has

been changed, send a
copy to the Vice server

that is the custodian of
the file.

Replace the file

contents and send a

callback to all other
clients holding callback]

promises on the file.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn.3 © Addison-Wesley Publishers 2000

