
Das Real-World Interface

Sensoren und Aktoren

Die sensorischen Komponenten

Die sechs Sinne: Biosensorik

Sensorleistung: tasten, schmecken, riechen, hören, sehen, orientieren

Die Sensoren: mechanisch, chemisch, akustisch, optisch

Elektromagn. Licht (Sehsinn)

Strahlung: Wärme(Wärme- und Kälterezeptoren in der Haut)

Schall: Hörsinn

Mechanisch: Kinästethisch (propriozeptiv)

Position der Körperteile: Streckrezeptoren in den Muskeln und Gelenken

Haptisch (exterozeptiv) (mit dem Tastsinn)

Chemisch: olfaktorisch (mit dem Geruchssinn)

gustatorisch (mit dem Geschmackssinn)

Beschleunigung: vestibulär (mit dem Gleichgewichtssinn)

Technische Sensoren

Auslösung:

taktil, chemisch, optisch, elektromagnetisch, akustisch, ferromagnetisch

Primäre Physische Größen:

Bewegung: Position, Weg, Geschwindigkeit, Beschleunigung, Abstand, Drehung, Druck, Temperatur, chem. Konzentration,

Mechanisch: Fliehkraftsensor, Beschleunigungsschalter

Optisch: Codierscheiben, Inkrementalgeber (Lochmasken)

Elektrisch:

Widerstand: Beisp.: Schalter, Magnetfeld, Temperatur, Licht, Druck, Position

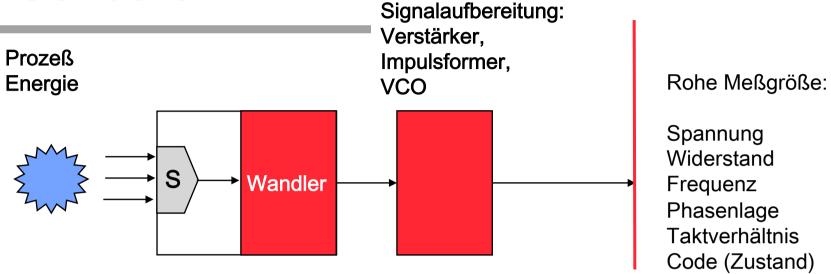
Kapazität: Druck, Füllstand, Position,

Induktion: Bewegung, Position,

Hall-Effekt

Fotoelektrische Effekte

Piezo-, Peltier-, ...


Elektrolytisch (elektrochemisch)

Chemisch:

Gasdetektoren, pH-Detektoren, ...

Sensoren

Beispiele:

Licht CCD, C-MOS-Array, Photowiderstand, Photodiode, Phototransistor

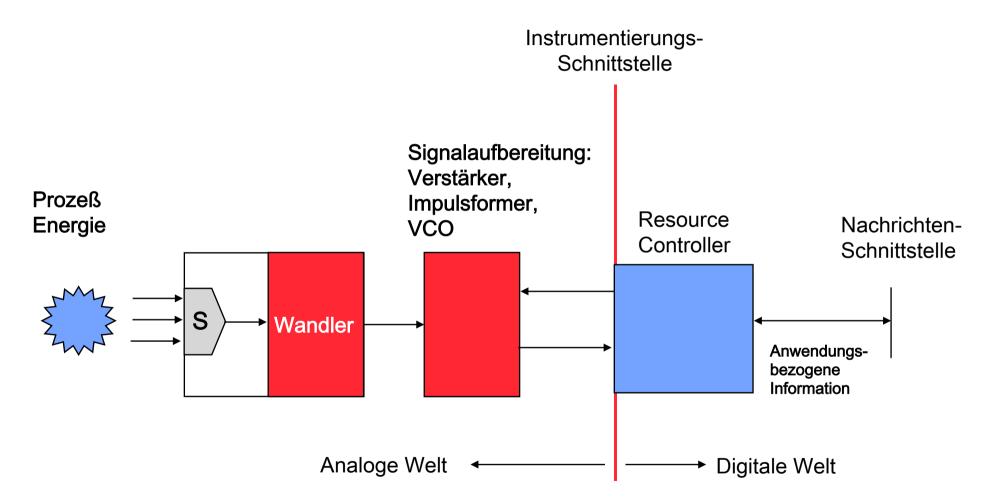
Druck Dehnungsmeßstreifen, Mikroschalter, Piezoelement

Temperatur Heißleiter, Kaltleiter, Halbleiter, Lithium-Tantal(Wärme-)-Sensor

(Ultra)Schall Wandler, Mikrophon

Chem. Sensoren CO₂, CO, Gas, pH-Wert

Lage Neigungsschalter (Qecksilberschalter), Kreisel, Beschleunigungssensor


Position Codierscheibe, Potentiometer

Gravitation Beschleunigungsmesser

Magnetfeld Magnetfeldsensoren

"Intelligente" Sensoren

Alireza Moini: "smart sensors are information sensors, not transducers and signal processing elements"

Unterscheidung von Sensoren

Passive Sensoren:

Vorhandene Prozeßenergie wird in Information gewandelt

Aktive Sensoren:

Prozeßenergie wird aktiv erzeugt und verarbeitet, d.h. im aktiven Sensor ist eine aktorische und eine sensorische Komponente.

Beispiele: Radar, Infrarot/Ultraschall Entfernungsmessung, Navigationssysteme (GPS), Laserscanner, mobiler Roboter (Mobot).

Intelligente Sensoren:

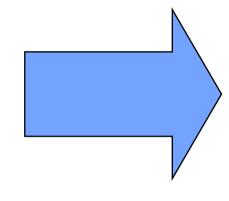
Enthalten eine Prozessorkomponente zur Verarbeitung der sensorischen Rohdaten und liefern anwendungsbezogene Information, die auch z.B. direkt die Steuerung von Aktoren ermöglicht.

Virtuelle Sensoren:

Eine physische Kenngröße wird nicht direkt gemessen, sondern durch eine andere, direkt gemessene Kenngröße approximiert.

Kooperierende Sensoren:

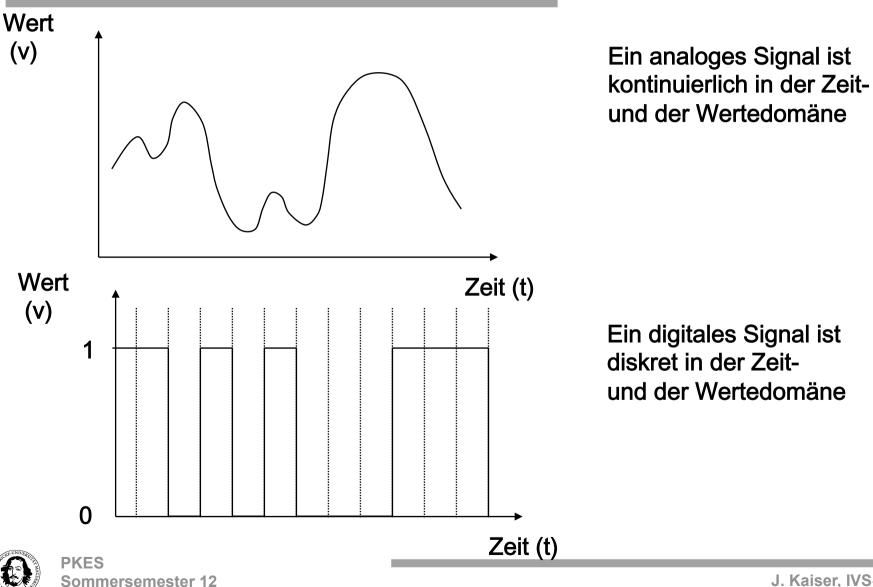
Mehrere möglicherweise unterschiedliche Sensoren arbeiten zusammen, um ein differenziertes Bild der Umwelt zu erhalten.

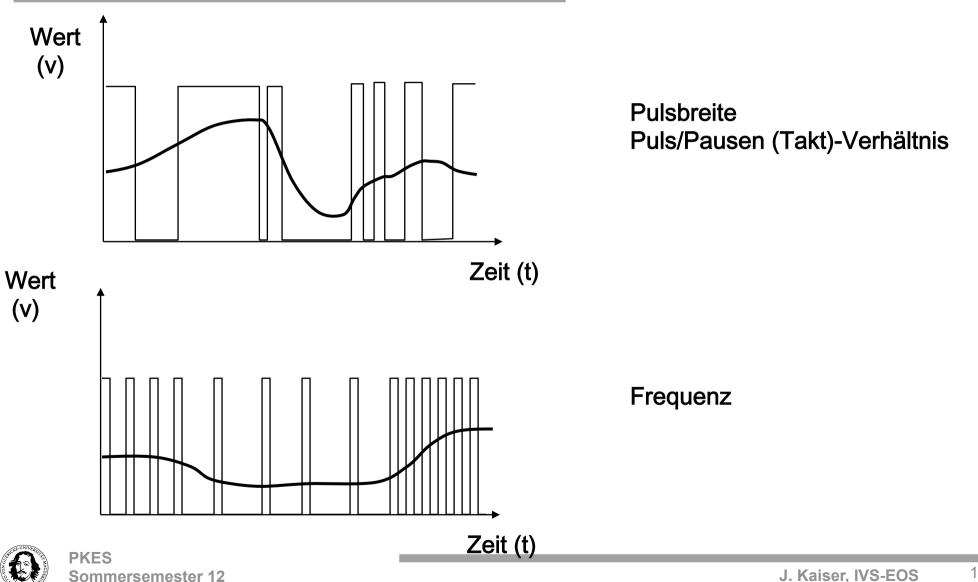

Anforderungen an die Instrumentierungschnittstelle:

Wandlung analoger elektrischer Größen:

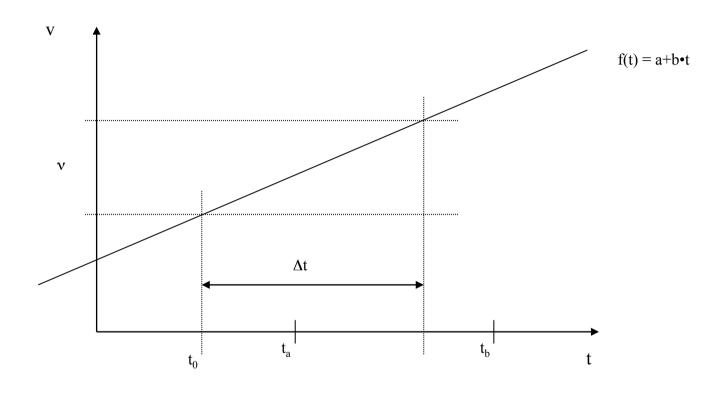
Spannung, Strom, Widerstand

Wandlung kontinuierlicher zeitlicher Größen:


Zeitintervalle, Perioden, Frequenzen


Repräsentation:

- digital
- binär


Analoge und digitale Grössen

Analoge Grössen in einer kontinuierlichen Zeitdomäne

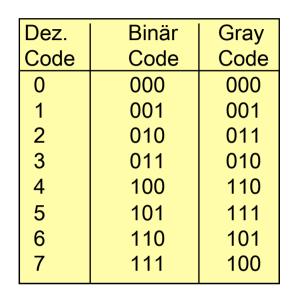
Zeitliche Gültigkeit von Sensordaten

 t_0 : point of observation

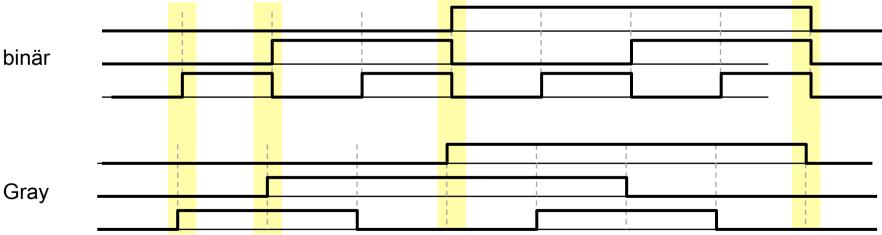
Δt: temporal validity interval

t_a: temporally consistent

t_b: temporally not consistent

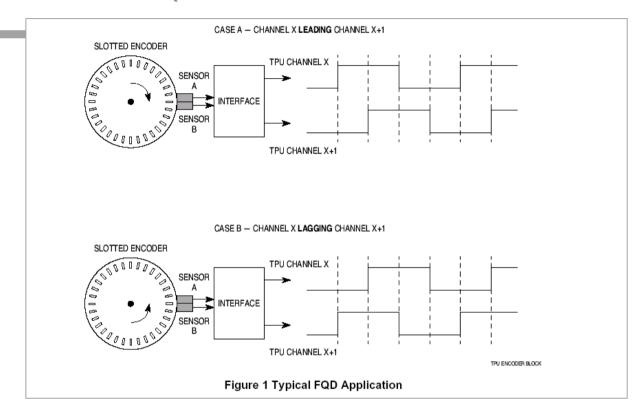


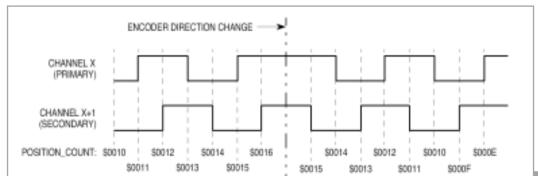

11


Beispiele von Sensoren

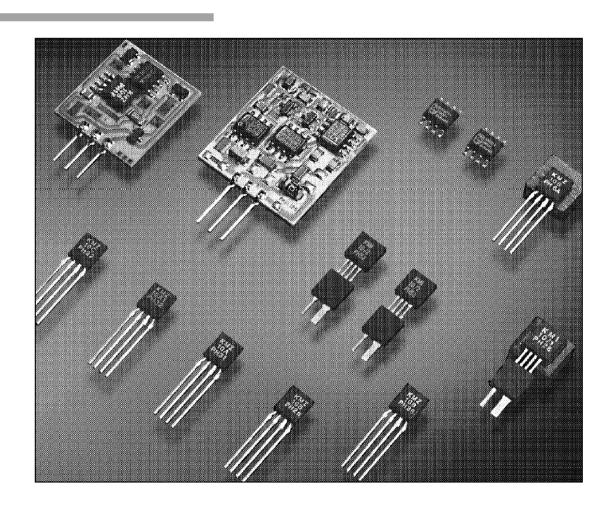
Absoluter Positionssensor

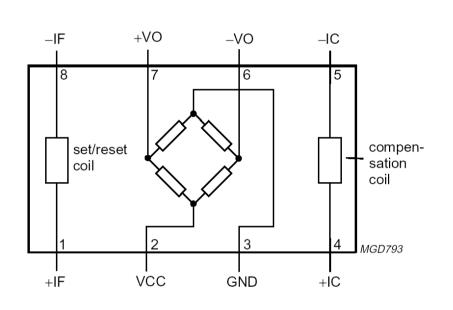
Codierscheibe für Gray Code

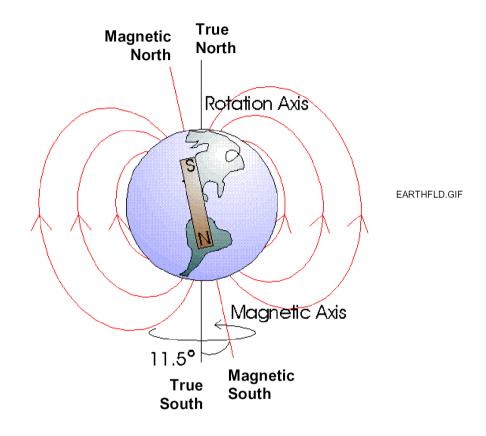




Odometrie Sensor (relativer, inkrementeller Positionssensor)


FQD: Fast
Quadrature
Decoder


Magnetfeldsensoren

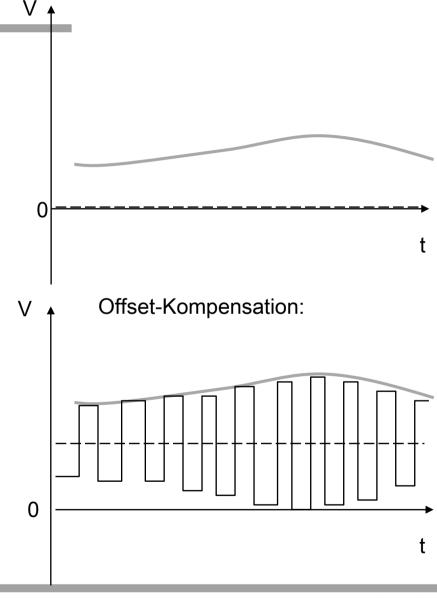

Electronic Compass Design using KMZ51 and KMZ52 AN00022,Thomas Stork Philips Semiconductors Systems Laboratory Hamburg, Germany, 30.03.2000

Applications of Magnetoresistive Sensors in Navigation Systems, Michael J. Caruso Honeywell Inc.

Magnetfeld Sensoren (KMZ 52, Philips)

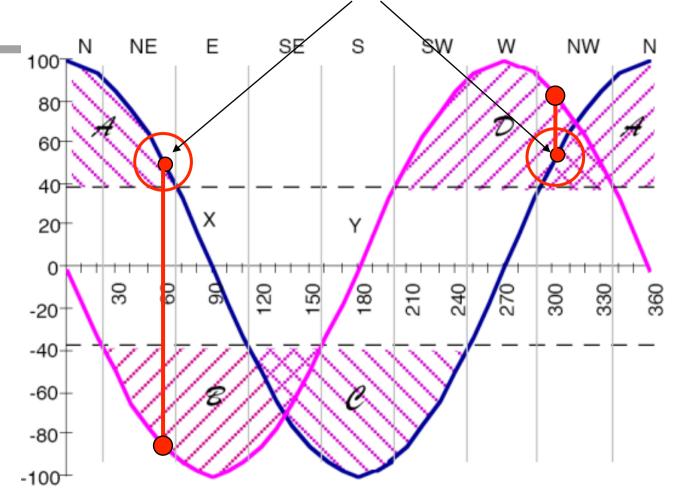
Deklination: Richtung zum magnetischen Nordpol (missweisend Nord)

Deviation (Missweisung): Abweichung vom geographischen Nordpol. Abhängig von Pos. bis zu 25°

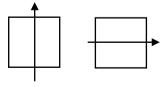

Inklination: Winkel der Magnetfeldlinien zur Erdoberfläche.

Abweichung: Störungen durch künstliche Magnetfelder.

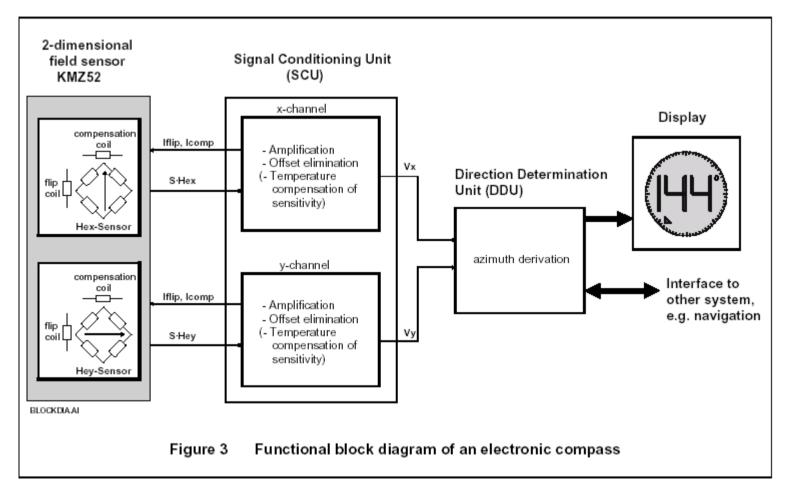
Kompensation des Offsets



Offset ist temperaturabhängig!



NE oder NW?

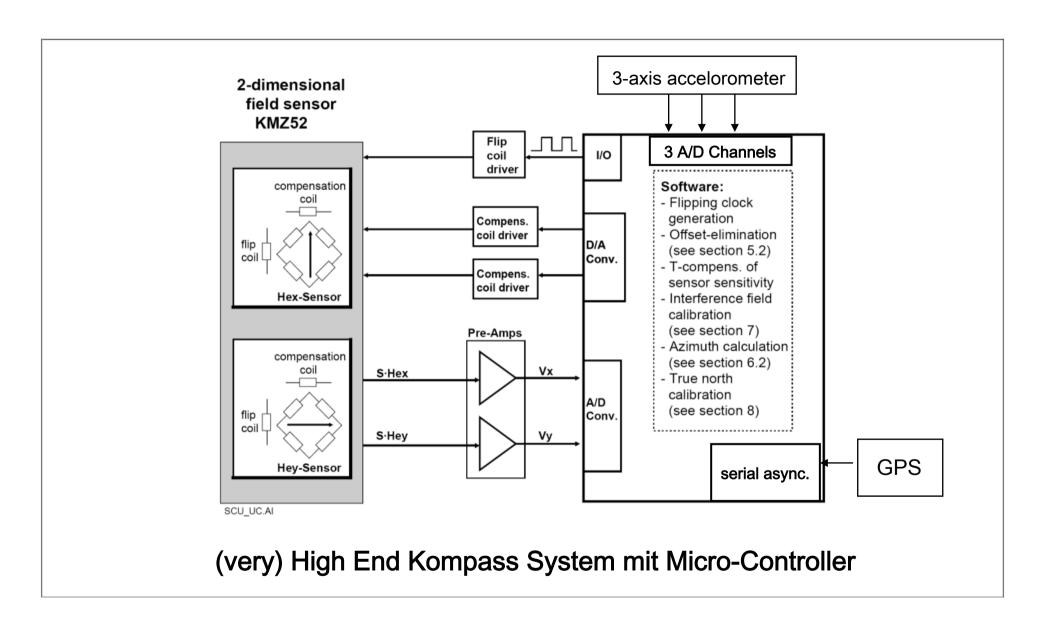


der orthogonale Sensor sorgt für Eindeutigkeit

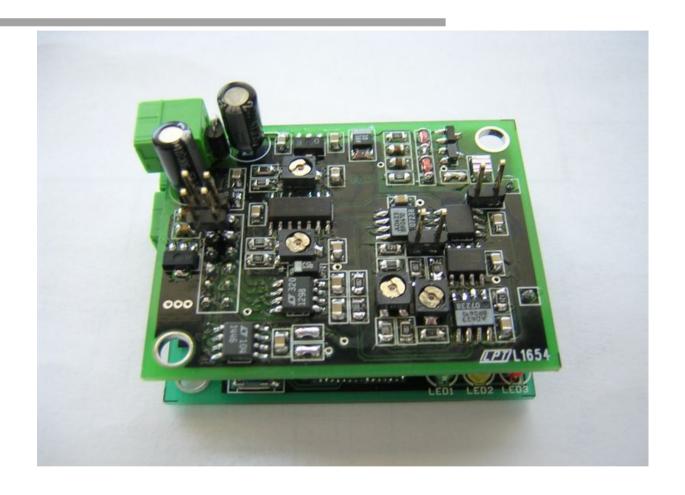
Bestimmung der Richtung durch 2 orthoginale Sensoren

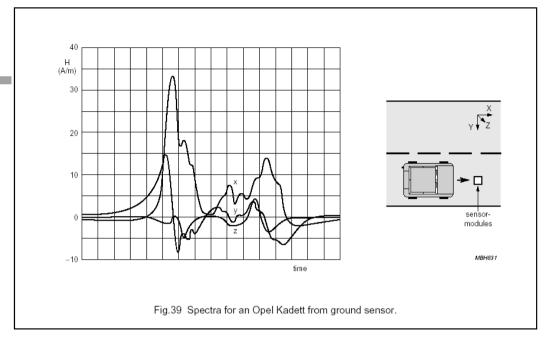
Magnetfeld Sensoren (KMZ 52, Philips)

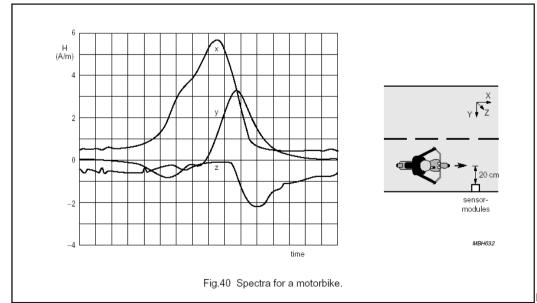
Empfindlichkeit gegenüber dem Winkel zwischen Erdoberfläche und Meßebene


ANGLE α LOCATION 5° 10° 15° Zürich 9.7° 18.8° 26.9° Hamburg 12.5° 23.8° 33.3° Anchorage 17° 31.2° 42.1° Singapore 1.5° 2.9° 4.3° Tokyo 5.7° 11.2° 16.5°

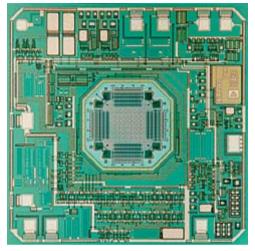
Abweichung von magn. N

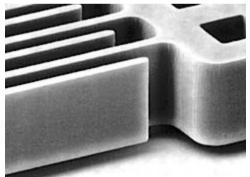

aus: Philips Semiconductors: Magnetic Field Sensors !998)

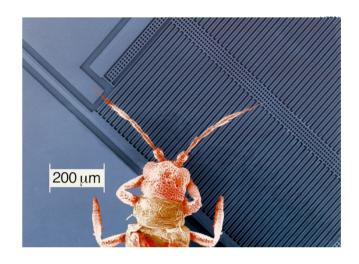




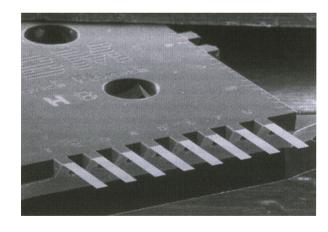
"intelligenter" Kompass für Steuerungsaufgaben mit CAN-Bus Schnittstelle


Einsatz in der Verkehrsüberwachung



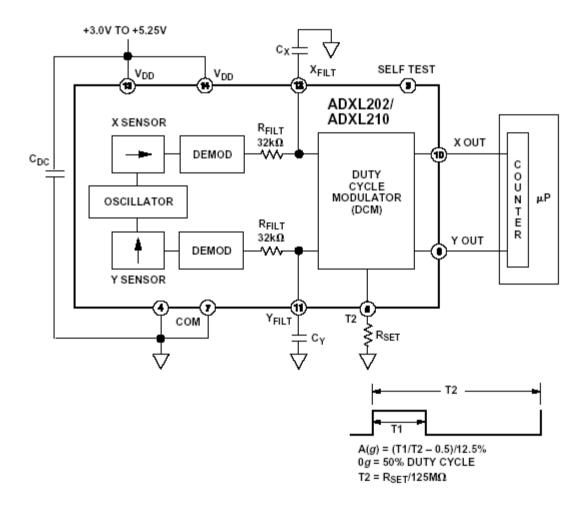


MicroElectroMechanical System


Micromechanischer Sensor (.Foto: Bosch)

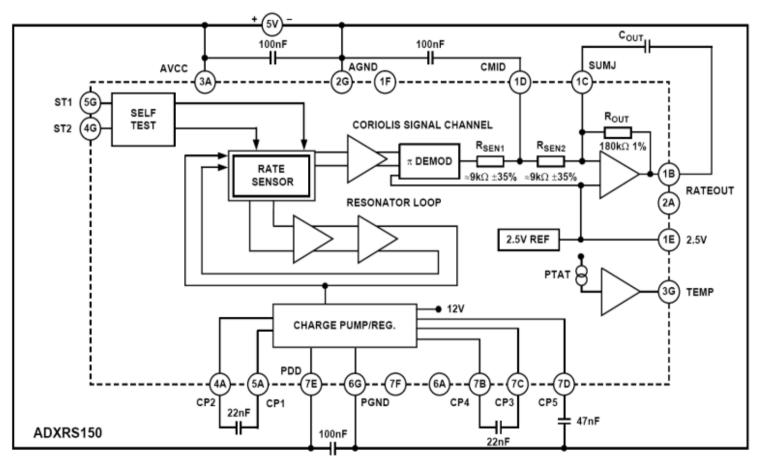
Bescheunigungssensoren

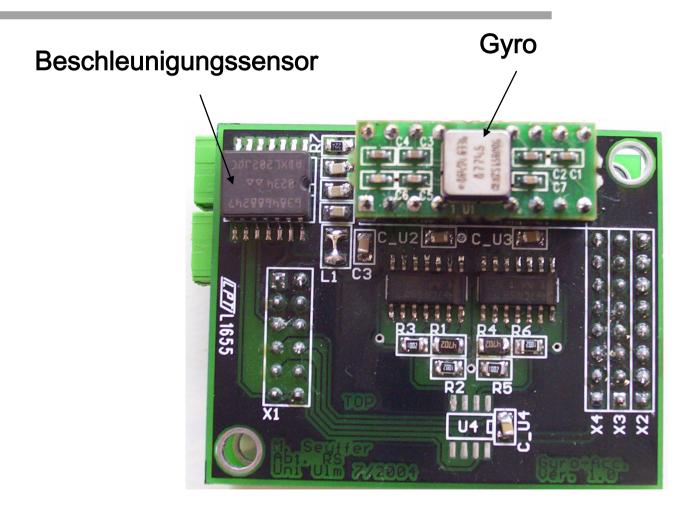
Drucksensoren


Gyroskope

Biosensoren

"In particular, the proof mass of a MEMS accelerometer is not much bigger than the pollen grains that Robert Brown saw through his microscope in 1827."

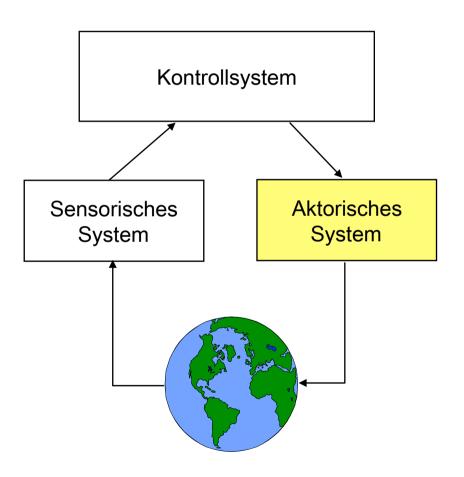

Beschleunigungssensor ADXL 202 (Analog Devices)



Gyro ADXRS150

FUNCTIONAL BLOCK DIAGRAM

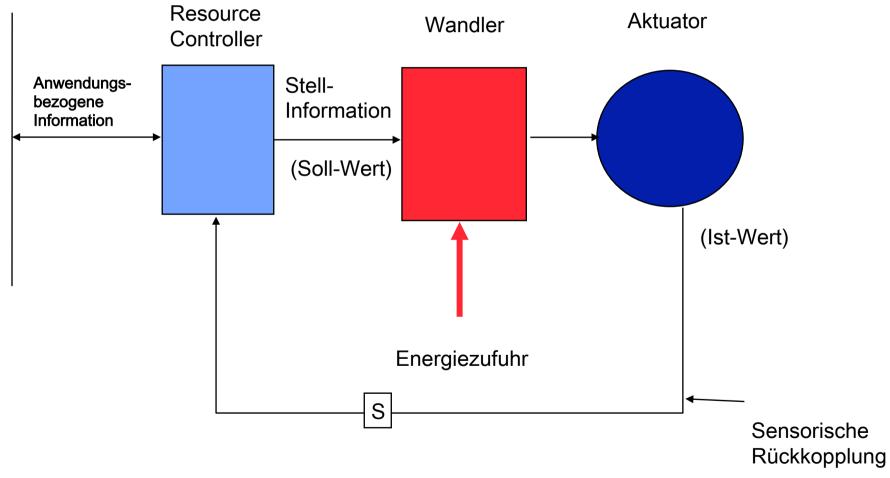
±150°/s Single Chip Yaw Rate Gyro with Signal Conditioning


Beschleunigungssensor und Gyro als intelligente Sensoren mit CAN-Bus Schnittstelle

Wichtige Frage:

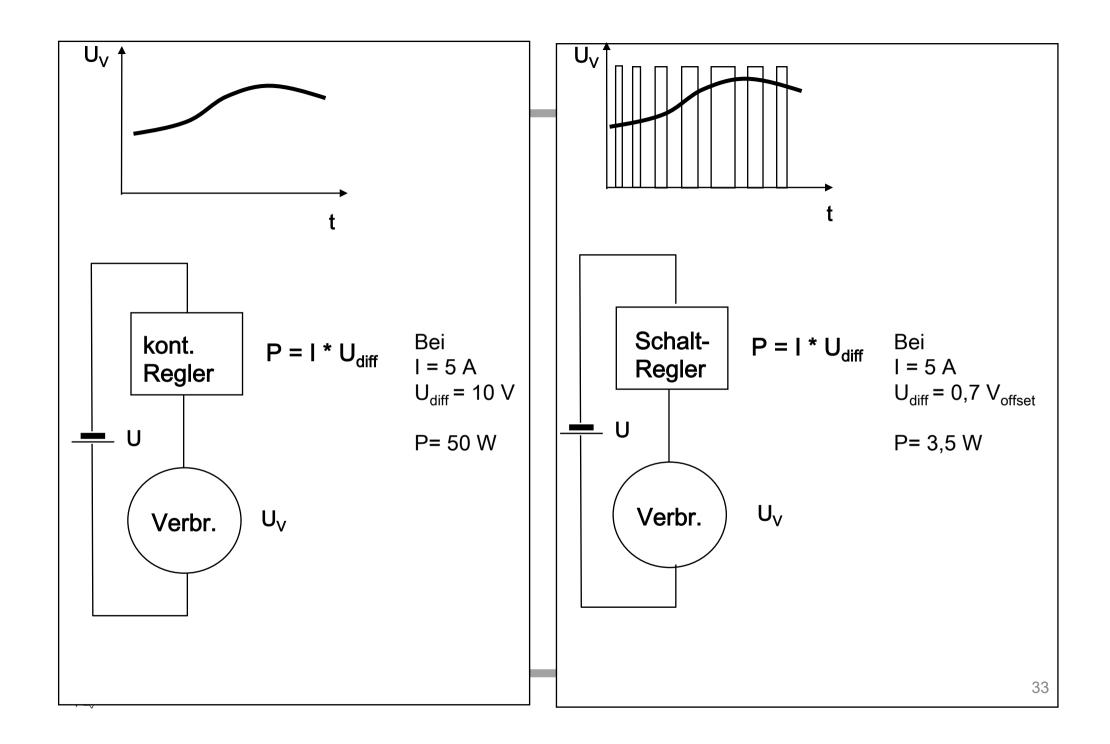
Welche Mechanismen stehen auf der Seite der Microcontroller zur Verfügung, um die sensorische Schnittstelle zur realisieren ?

Die aktorischen Komponenten

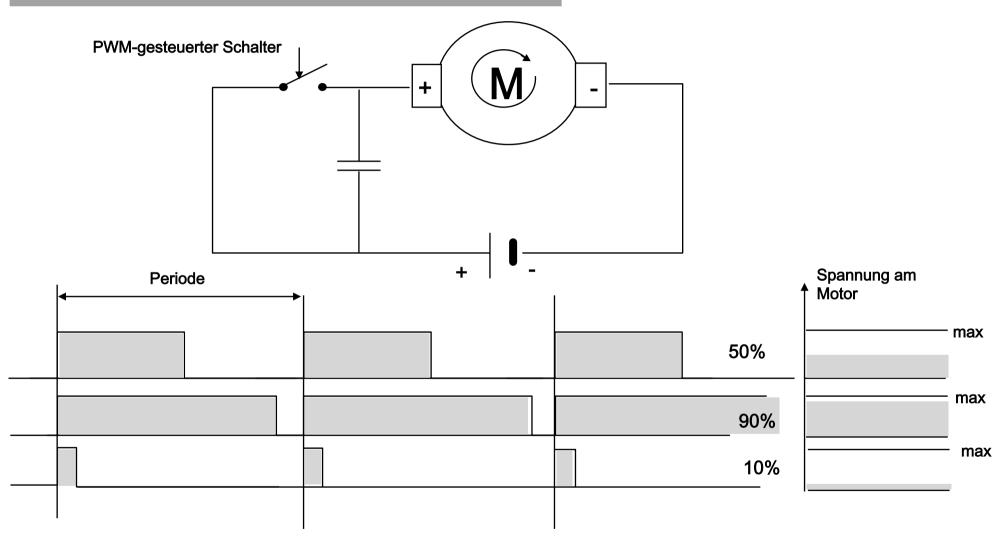

Aktoren

Beispiele:

Motoren (Gleich/Wechsel/Drehstrom, Schrittmotoren)
Lampen
Heizelemente
Kühlelemente
Magneten
Bi-Metalle
"künstliche Muskeln"

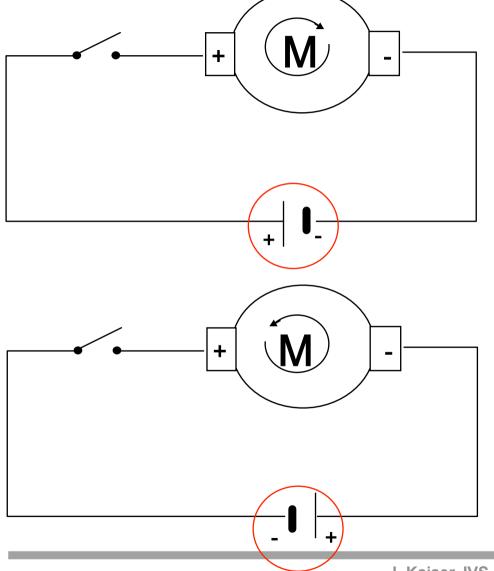

Intelligenter Aktuator

Nachrichten-Schnittstelle

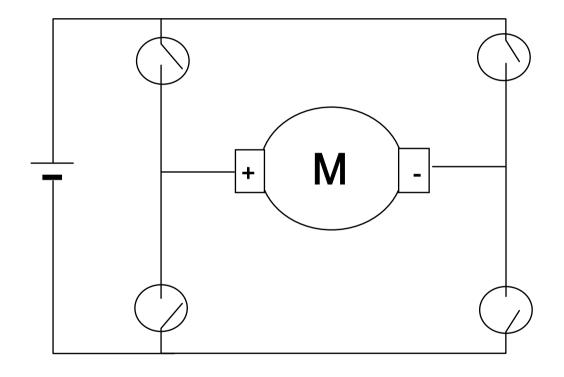


Steuerung von Aktoren:

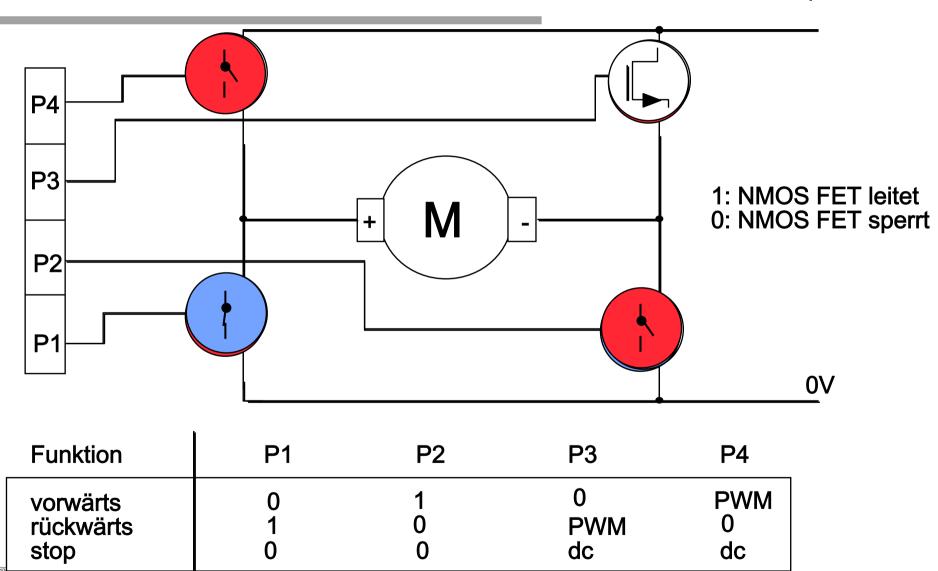
- Analoge Größen, kontinuierlich in Wert und Zeit
- Analoge Größen, fest im Wert, kontinuierlich in der Zeit



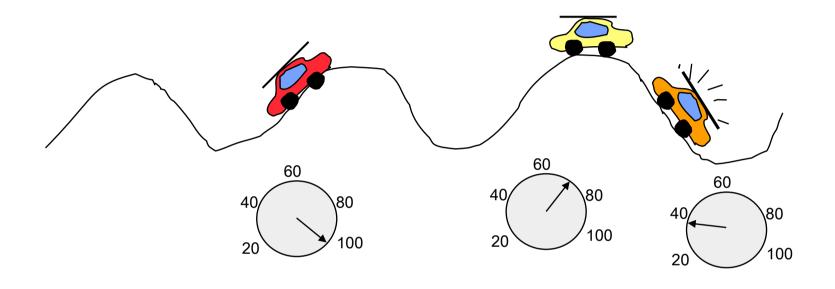
Motorsteuerung mit PWM-Kanälen


Motorsteuerung mit PWM-Kanälen

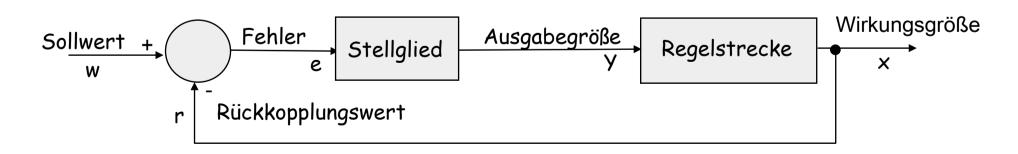
Änderung der Drehrichtung durch Umpolen des Gleichstrommotors

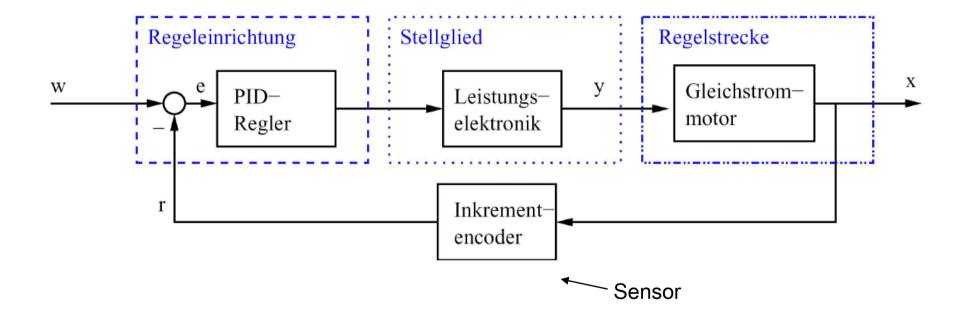


Motorsteuerung mit PWM-Kanälen


Die H-Brücke

Motorsteuerung mit PWM-Kanälen


Problem: Konstante Energiezufuhr resultiert in Geschwindigkeitsunterschieden


Konstante Geschwindigkeit erfordert zusätzlich: Regelung

Regelung

Mechanischer Fliehkraftregler für die Dampfmaschine

Beispiel: Regelung eine Elektromotors

w: gewünschte Größe

e: Fehler

y: Ausgabegröße

x: Wirkungsgröße

r: Rückkopplungsgröße

Drehzahl (Ticks/Zeit)

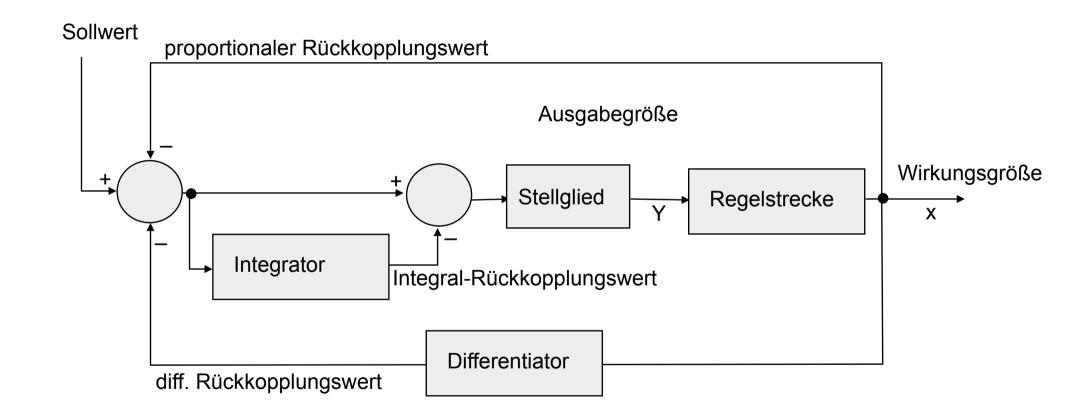
∆ Drehzahl

PWM Wert

Drehzahl

Drehzahl

Regelcharakeristiken:

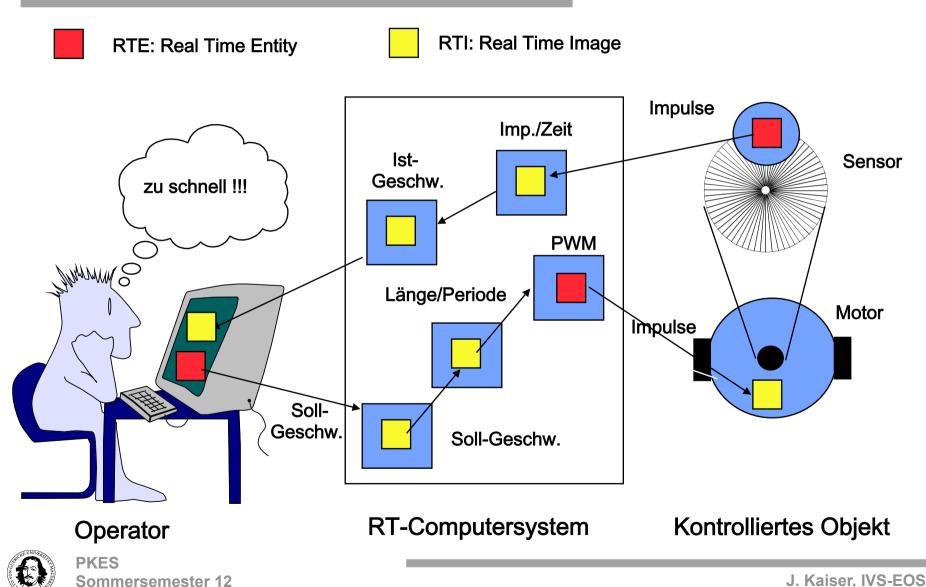

Fehler e := Abweichung des Istwerts vom Sollwert

1. Binärer Regler (Ein-Aus): Schwellwert-Regelung

$$y = \begin{cases} 0 \text{ if } e < Schwelle \\ 1 \text{ if } e > Schwelle \end{cases}$$

- 2. Proportional-Regler: Änderung proportional zur Größe des Fehlers: $y = K_1 e$
- 3. Proportional-Differential-Regler (PD): Änderung proportional zur Größe der Fehleränderung: $y = K_1 e + K_2 de/dt$
- 4. Proportional-Integral-Regler (PI): Kleine Restfehler werden aufsummiert und ausgeregelt: $y = K_1 e + K_2 \int e \, dt$
- 5. Proportional-Integral-Differential-Regler (PID): Reagiert auf schnelle Änderungen und Restfehler: $y = K_1 e + K_2 de/dt + K_3 \int e dt$

PID-Regler


Charakteristik von Regelungen:

Wichtige Frage:

Welche Mechanismen stehen auf der Seite der Microcontroller zur Verfügung, um die aktorische Schnittstelle zur realisieren ?

Physische Ereignisse und ihre Repräsentation

Instrumentierungsschnittstelle (RWI) und Nachrichtenschnittstelle (MI)

RWI: konkrete low-level Schnittstelle zu einer Komponente, die vom Umfeld festgelegt wird

MI: Interne abstrakte Nachrichtenschnittstelle. Hier wird von physischen Gegebenheiten abstrahiert.

Der Resource-Controller (RC) ist die Schnittstellenkomponente zwischen RWI und MI hat die Rolle eines Wandlers (Transducer*, Transduktor) zwischen der spezifischen Informationsrepräsentation der "Welt" und dem vereinbarten (in Struktur und Semantik) Nachrichtenformat.

Der RC verbirgt die physische Schnittstelle der RW-Komponente von der standardisierten Repräsentation der Information im Rechner.

Der RC kann als eine allgemeine Form eines Gateways interpretiert werden.

^{*} Transducer (Webster): A device that receives energy from one system, and retransmits it, often in a different form, to another.

Vergleich RWI und MI

Charakteristik	RWI	MI
Informationsdarstellung	speziell	standard
Kopplung	eng	lose(r)
Codierung	analog/digital	digital
Zeitbasis	kontinuierlich	diskret
	(dense)	(sparse)
Responsivität	eng	lose(r)
(Netz-)Topologie	1-zu-1	Multicast (n-zu-n)
Entwurfsfreiheit	begrenzt	frei

Beispiele für standardisierte MIs:

• SAE J 1587: Message Specification for heavy duty vehicle applications

• MAP MMS: Manufacturing Automation Protocol

Manufacturing Message Specification

• CanOpen: Can Application Layer (low level)

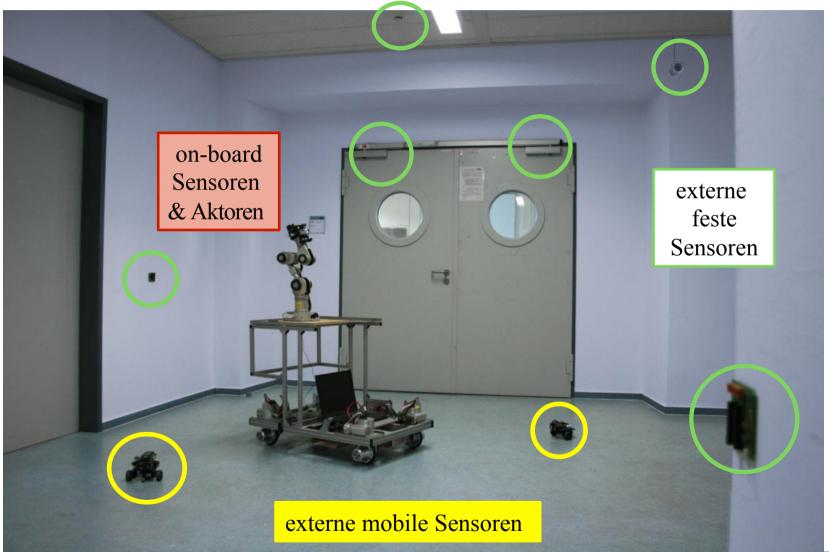
• IEEE 1451: Smart Transducer Schnittstelle(n)

IEEE 1451: Ein Standard für Intelligente Sensoren und Aktoren

Standard für "SMART TRANSDUCERS" !! Warum "SMART"?

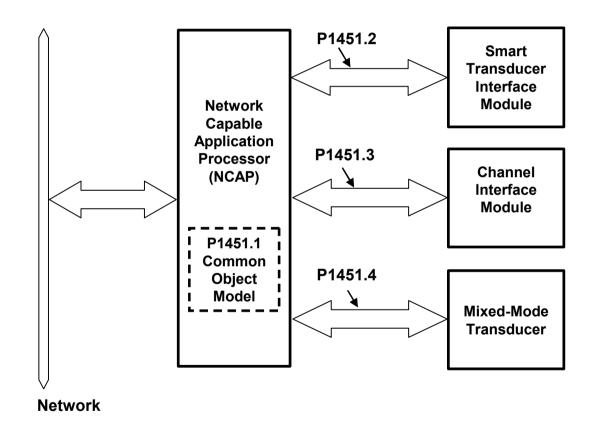
Smart Transducers (ST) stellen Funktionen zur Verfügung, die eine einfache und kontengünstige Erweiterung von Anwendungen ermöglichen. Plug and Play!

Elektronisches Datenblatt Selbst-Identifikation Intelligente (und autonome) Kalibrierung, Diagnose und Adaption Digitale Schnittstelle Kommunikation

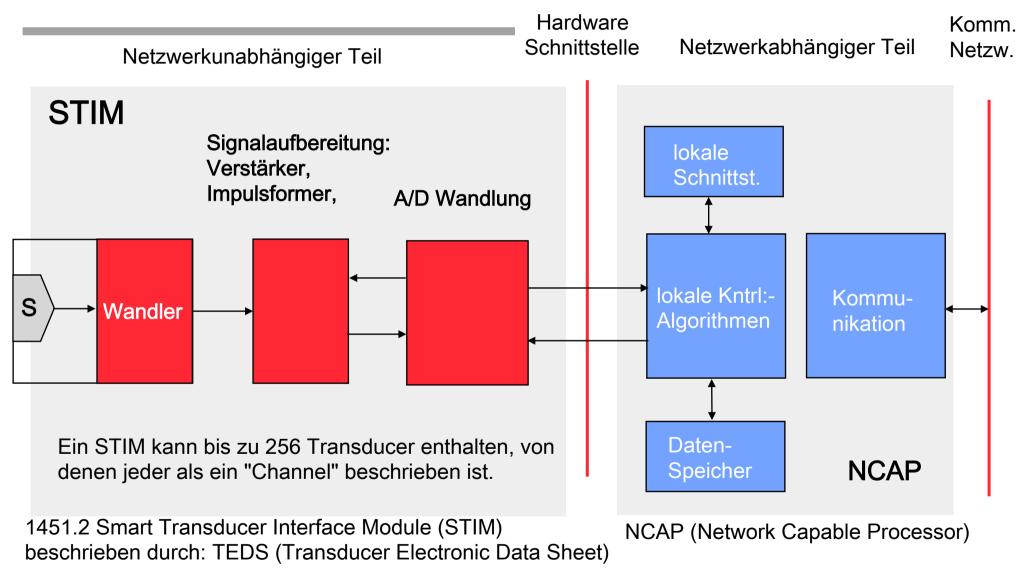

Eigenschaften können "in situ" festgestellt und geändert werden: Kalibrierung, Korrekturfaktoren, Ort, Typ, Operationsschranken.

In einem dezentralisierten System sind Sensoren nutzlos, wenn nicht:

- ihre korrekte Funktion festgestellt werden kann,
- sie nach Typ und Ort identifiziert werden können und
- ihre Betriebsumstände verifiziert werden können, d.h. sie operieren unter den vom Hersteller angegebenen Bedingungen wie Signalbereich und Umgebungsbedingungen.



Eine "instrumentierte" Umgebung


A STATE OF THE STA

Komponenten des IEEE 1451 Standards

IEEE 1451 Smart Transducer Model

Übersicht TEDS

Meta-TEDS C

One per STIM:

Contains the overall description of the TEDS data structure, worst case STIM timing parameters, and channel grouping information.

Channel TEDS

One per STIM channel:

Contains upper/lower range limits, physical units, warm up time, presence of self-test, uncertainty, data model, calibration model, and triggering parameters.

Calibration TEDS

One per STIM channel:

Contains the last calibration date, calibration interval and all the calibration parameters supporting the multi-segment model.

Application specific TEDS

Extension TEDS

Multiple per STIM:

For application specific use.

Multiple per STIM:

Used to implement future and industry extensions to P1451.2.

		Meta TEDS							
Beispiel: Beschreibung eines	Field #	Description	Field Length (Bytes)	Field type	Field Contents				
-		Data structure related information	(Bytos)						
Drucksensors	1	Meta-TEDS Length	4	U32	48				
	2	IEEE 1451 Standards Family Working Group Number	1	U8	2				
Stan P. Woods, Janusz Bryzek,	3	TEDS Major Version Number	2	U16	2				
Steven Chen, Jeff Cranmer,	4	Future Extensions Key	1	U8	0 (NONE)				
Edwin Vivian El-Kareh, Mike Geipel, Fernando Gen-Kuong, John Houldswort,	5	CHANNEL_ZERO Industry Extensions Key	1	U8	0 (NONE)				
Norm LeComte, Kang Lee,	6	End Users' Application Specific TEDS Key	1	U8	0				
Michael F. Matte, David E. Rasmussen	7	Number of Implemented Channels	1	U8	1				
IEEE-P1451.2 Smart Transducer	8	String Language Code	1	U8	0				
Interface Module	9	Bytes per Character	1	U8	1				
		Timing related information							
	10	Worst Case Channel Data Model Length	1	U8	2				
	11	Worst Case Channel Data Repetitions	2	U16	1				
	12	Worst Case Channel Update Time	4	F32	2.00E-05				
	13	Worst Case Channel Write Setup Time	4	F32	0				
	14	Worst Case Channel Read Setup Time	4	F32	8.00E-05				
	15	Input/Output Response Time	4	F32	5.00E-04				
	16	Calibration TEDS Write Time	4	F32	0				
	17	Worst Case Data Clock Frequency	4	U32	2.00E+05				
	18	Worst Case Channel Sampling Period	4	F32	2.00E-04				
U8, U16, U32 are unsigned	19	Worst Case Unit Warm Up Time	4	F32	1				
integers of length 8, 16 and 32	20	Channel grouping related information	2	1146					
bits respectively.	20 21	Channel Groupings Data Sub-Block Length	2 0	U16 U8	0				
F32 is a single precision	22	Number of Channel Groupings = G Group Name Length	0	U8	-				
IEEE floating point number	23	Group Name (<= 255)	0	STRING	-				
STRING is an array of	24	Group Type	0	U8	-				
character bytes	25	Number of Group Members = N	0	U8	_				
UNITS is the SI representation	26	Member Channel Numbers List = M(N) (<= 255)	0	array of U8					
,		Data integrity information	-	anay or oo					
UNIVERSITY OF THE PROPERTY OF	27	Checksum for Meta-TEDS	2	U16	62856				
PKES					(ainer IVO EOO 5				

-					+
		Data structure related information	_		
	28	Meta-Identification TEDS Length	4	U32	310
d		Identification related information			
-1	29	Manufacturer's Identification Length	1	U8	55
	30	Manufacturer's Identification (<= 255)	55	STRING	Texas Instruments
					Incorporated
					Control Product Division
	31	Model Number Length	1	U8	9
	32	Model Number (<= 255)	9	STRING	EX3514.XX
	33	Revision Code Length	1	U8	2
	34	Revision Code	2	STRING	01
	35	Serial Number Length	1	U8	5
	36	Serial Number (<= 255)	5	STRING	SN-01
	37	Date Code Length	1	U8	25
	38	Date Code (<= 255)	25	STRING	November 1, 1995,
					Shift 1
	39	Product Description Length	2	U16	205
	40	Product Description (<= 65535)	205	STRING	Description: Ratiometric
		Troduct Becomplien (Seese)		0111110	Pressure Transducer
					Part Number:
					EX3514.XX
					Serial Number: SN-01
					Pressure Range:
					0 To 3000 PSIA
					Input Voltage: 5 Vdc
					Output Voltage:
					0 To 5 Vdc
					Temperature Range:
					-40 To 85° C
	14	Data integrity information data sub-block	_	1140	20720
L	41	Checksum for Meta-Identification TEDS	2	U16	38702

	Channel	TEDS		
Field #	Description	Field Length (Bytes)	Field type	Field Contents
	Data structure related information			
42	Channel TEDS Length	4	U32	80
43	Calibration Key	1	U8	1 (FIXED)
44	Industry Extension Key	1	U8	0 (NONE)
	Transducer related information			
45	Lower Range Limit	4	F32	0
46	Upper Range Limit	4	F32	20684190
47	Physical Units	10	UNITS	Pa (0,128,128,126,130,
				124,128,128,128,128)
48	Unit Type Key	1	U8	0 (SENSOR)
49	Unit Warm Up Time	4	F32	1
50	Self Test Key	1	U8	0 (NONE)
51	Uncertainty	4	F32	206842
	Data converter related information			
52	Channel Data Model	1	U8	0 (N BYTE)
53	Channel Data Model Length	1	U8	2
54	Channel Model Significant Bits	2	U16	12
55	Channel Data Repetitions	2	U16	12 1
56	Series Increment	4	F32	o
57	Series Units	10	UNITS	o
58	Channel Update Time	4	F32	2.00E-05
59	Channel Write Setup Time	4	F32	o
60	Channel Read Setup Time	4	F32	8.00E-05
61	Data Clock Frequency	4	U32	2.00E+05
62	Channel Sampling Period	4	F32	2.00E-04
63	Timing Correction	4	F32	0
64	Trigger Accuracy	4	F32	5.00E-06
-	Data integrity information			0.002
65	Checksum for Channel TEDS	2	U16	59968
	Data structure related information			
66	Channel Identification TEOS Length	4	U32	8
	Identification related information			
BT	Manufacturer's Identification Length	1	UB	0
68	Manufacturer's Identification (<= 255)	0	STRING	-
69	Model Number Length	1	UB	0
70	Model Number (<= 265)	0	STRING	
71	Revision Code Length	1	UB	0
72	Revision Code (<= 255)	0	STRING	_ "
73	Serial Number Length	1 1	UB	D
74	Serial Number (<= 255)	0	STRING	
76	Channel Description Length	2	U16	0
76	Channel Description (<= 65635)	Ö	STRING	
	Data Integrity Information	<u> </u>		
77	Checksum for Channel Identification TEDS	2	U16	68527

	Calibration 1	ΓEDS		
Field #	Description	Field Length (Bytes)	Field type	Field Contents
	Data structure related information			
78	Calibration TEDS Length	4	U32	99
	Calibration related information			
79	Last Calibration Date-Time	4	U32	0
80	Calibration Interval	4	U32	0
81	Number of Correction Input Channels = n	1	U8	1
82	Correction Input Channel List	1	U8	1
83	Correction Input Channel-Key List	1	U8	0
84	Channel Degree List = D(k)	1	U8	1
85	Number of Segments List = N _k	1	U8	5
86	Segment Boundary Values Table (Pa)	24	F32	0
	(segment 1 high boundary)		F32	4136838
	(segment 2 high boundary)		F32	8273676
	(segment 3 high boundary)		F32	12410514
	(segment 4 high boundary)		F32	16547352
	(segment 5 high boundary)		F32	20684190
87	Segment Offset Values Table (Pa)	20		
	(segment 1 offset)		F32	5051
	(segment 2 offset)		F32	5051
	(segment 3 offset)		F32	5051
	(segment 4 offset)		F32	5051
	(segment 5 offset)		F32	5051
88	Multinomial Coefficients	40		
	A ₀₀ (Pa)		F32	-126372
	A ₀₁ (Pa/count)		F32	5244
	A ₁₀		F32	-44141
	A ₁₁		F32	5144
	A_{20}		F32	111220
	A_{21}		F32	5049
	A ₃₀		F32	331826
	A ₃₁		F32	4959
	A ₄₀		F32	610811
	A ₄₁		F32	4874 56
	Data integrity information		1140	
89	Checksum for Calibration TEDS	2	U16	57092

Physikalische Basiseinheiten: http://de.wikipedia.org/wiki/Internationales_Einheitensystem

Quantity	Unit	Symbol
Länge	meter	m
Masse	Kilogramm	kg
Zeit	Sekunden	S
Elektr. Strom	Ampère	A
Thermodynamische Temperatur	Kelvin	K
chem. Masseeinheit	Mol	mol
Lichtintensität	Candela	cd

ISO 31-0:1992(E), "General Introduction to ISO 31—General Principles Concerning Quantities, Units and Symbols," International Organization for Standardization, Geneva, Switzerland, 1974.

D	Derived quantity	Special name	Special symbol	Expression in terms of other SI units	Expression in terms of SI Base units
	lane angle	radian	rad		m m ⁻¹ =1
SC	olid angle	steradian	sr		$m^2 m^{-2} = 1$
	requency	hertz	Hz		s ⁻¹
aı	rea (square meter)				m ²
	olume (cubic meter)				m ³
	cceleration (meter per second				m/s^2
sc	quared)				
	vave number (reciprocal meter)				m ⁻¹
	nass density(density)				kg/m³
	kilogram per cubic meter)				_
	pecific volume				m³/kg
	cubic meter per kilogram)				,
	urrent density				A/m ²
	ampere per square meter)				
	nagnetic field strength				A/m
	ampere per meter)				
	mount-of-substance concentration				Mol/m ³
_ `	nole per cubic meter)				11. 2
	iminance				cd/m ²
	candela per square meter)		3.7		1 -2
	orce	newton	N	2.7	m kg s ⁻²
p	ressure, stress	pascal	Pa	N/m ²	$m^{-1}kg s^{-2}$
	nergy, work, quantity of heat	joule	J	N m	$M^2 \text{ kg s}^{-2}$
	ower, radiant flux	watt	W	J/s	$m^2 \text{ kg s}^{-3}$
	lectric charge,	coulomb	С		s A
	uantity of electricity	1,	* 7	XX7/A	21 -3 4 -1
	lectric potential,	volt	V	W/A	m²kg s ⁻³ A ⁻¹
	otential difference, lectromotive force				
	apacitance	farad	F	C/V	m ⁻² kg ⁻¹ S ⁴
	араспансе	Tarau	Г	C/V	$\begin{bmatrix} \Pi & Kg & S \\ A^2 & & \end{bmatrix}$
el	lectric resistance	ohm	Ω	V/A	m² kg s-3 A-2
el	lectric conductance	siemens	S	A/V	$m^{-2} kg^{-1} s^3$ A^2
m	nagnetic flux	weber	Wb	Vs	$m^2 kg s^{-2} A^{-1}$
	nagnetic flux density	tesla	T	Wb/m ²	kg s ⁻² A ⁻¹
	nductance	henry	Н	Wb/A	$m^2 kg s^{-2}A^{-2}$
	Celsius temperature	degree	°C		K
	r 3	Celsius	-		
lu	iminous flux	lumen	lm		cd sr
	luminance	lux	1x	lm/m ²	m ⁻² cd sr

Normierte Darstellung physikalischer Parameter in 1451.2

Field #	Description	# bytes						
1	ENUMERATION 0: Unit is described by the product of SI base units raised to the powers recorded in fields 2 through 10.	1						
	Unit is U/U, where U is described by the product SI base units raised to the powers recorded in fields 2 through 10.							
	 Unit is log_e(U), where U is described by the product of SI base units raised to the powers recorded in fields 2 through 10. 							
	3: Unit is log _e (U/U), where U is described by the product of SI base units raised to the powers recorded in fields 2 through 10.							
	4: The associated quantity is digital data (e.g. a bit vector) and has no unit. Fields 2-10 shall be set to 128.							
	5-255: Reserved							
2	(2 * <exponent of="" radians="">) + 128</exponent>	1						
3	(2 * <exponent of="" steradians="">) + 128</exponent>	1						
4	(2 * <exponent meters="" of="">) + 128</exponent>	1						
5	(2 * <exponent kilograms="" of="">) + 128</exponent>	1						
6	(2 * <exponent of="" seconds="">) + 128</exponent>	1						
7	(2 * <exponent amperes="" of="">) + 128</exponent>	1						
8	(2 * <exponent kelvins="" of="">) + 128</exponent>	1						
9	(2 * <exponent moles="" of="">) + 128</exponent>	1						
10	(2 * <exponent candelas="" of="">) + 128</exponent>	1						

SI: Le Système International d'Unités.

Beispiele:

Nur die Dimension, nicht der Wert wird codiert!

Länge in Metern

	Enum	rad	sr	m	kg	s	A	K	mol	cd
exponent	0	0	0	1	0	0	0	0	0	0
decimal		128	128	130	128	128	128	128	128	128

Fläche in m²

	Enum	rad	sr	m	kg	s	A	K	mol	cd
exponent	0	0	0	2	0	0	0	0	0	0
decimal		128	128	132	128	128	128	128	128	128

Druck in pascal = m⁻¹ kg s⁻²

	Enum	rad	sr	m	kg	S	A	K	mol	cd
exponent	0	0	0	-1	1	-2	0	0	0	0
decimal		128	128	126	130	124	128	128	128	128

Widerstand in Ω = m² kg s⁻³ A⁻²

	Enum	rad	sr	m	kg	s	A	K	mol	cd
exponent	0	0	0	2	1	-3	-2	0	0	0
decimal		128	128	132	130	122	124	128	128	128

Noise Spectral Density : volts per root Hertz (V/ \sqrt{hz} = m² kg s^{-5/2} A⁻¹)

	Enum	rad	sr	m	kg	s	A	K	mol	cd
exponent	0	0	0	2	1	-5/2	-1	0	0	0
decimal		128	128	132	130	123	126	128	128	128

Power Quantity - Bel (log10 W/W) W = $m^2 \text{ kg s}^{-3}$

	Enum	rad	sr	\mathbf{m}	kg	S	A	K	mol	cd
exponent	3	0	0	2	1	-3	0	0	0	0
decimal		128	128	132	130	122	128	128	128	128

Beispiele:

Switch Positions

	Enum	rad	sr	m	kg	s	A	K	mol	cd
exponent	4	0	0	0	0	0	0	0	0	0
decimal		128	128	128	128	128	128	128	128	128

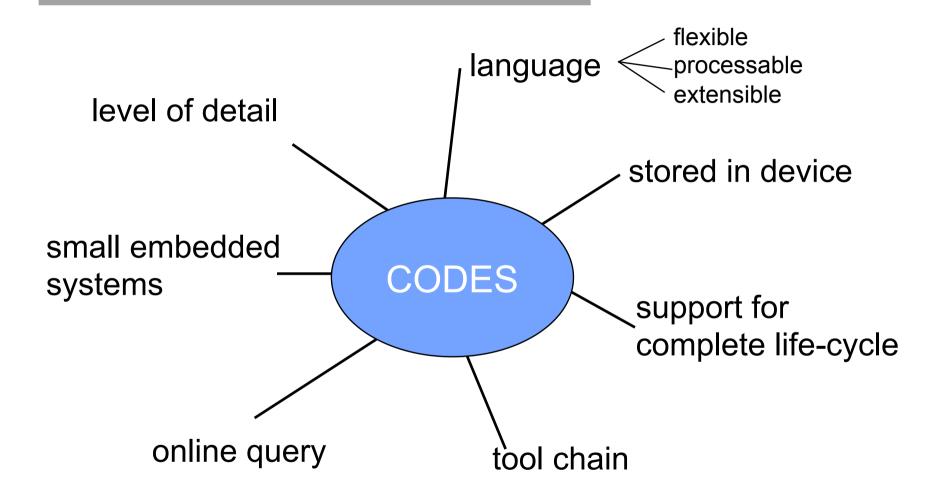
Lee H. Eccles (Boeing Commercial Airplane Company): Physical Units Representation in IEEE 1451.2

COsmic embedded DEvice Specifications

Hubert Piontek, Jörg Kaiser. **Self-describing devices in COSMIC**. Proceedings of the 10th IEEE International Conference on Emerging Technologies and Factory Automation, 2005

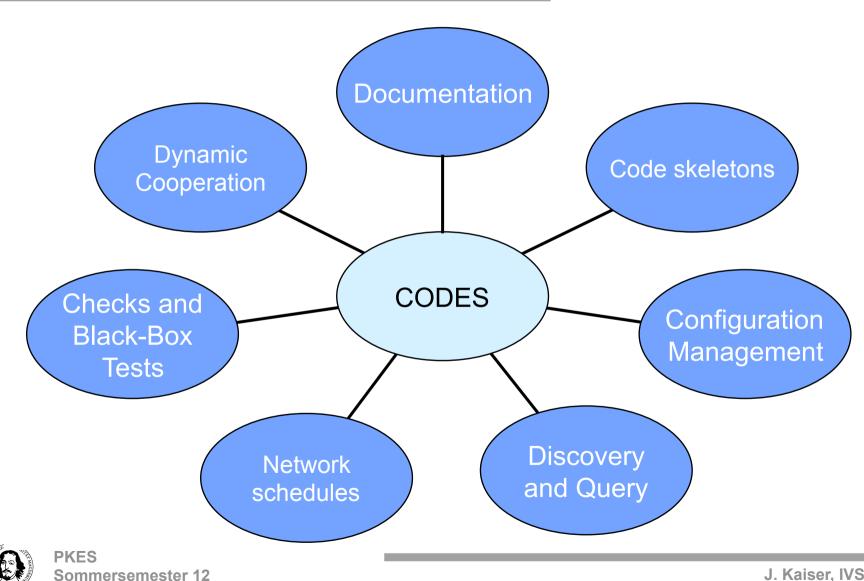
1. General information

device name, manufacturer, ...

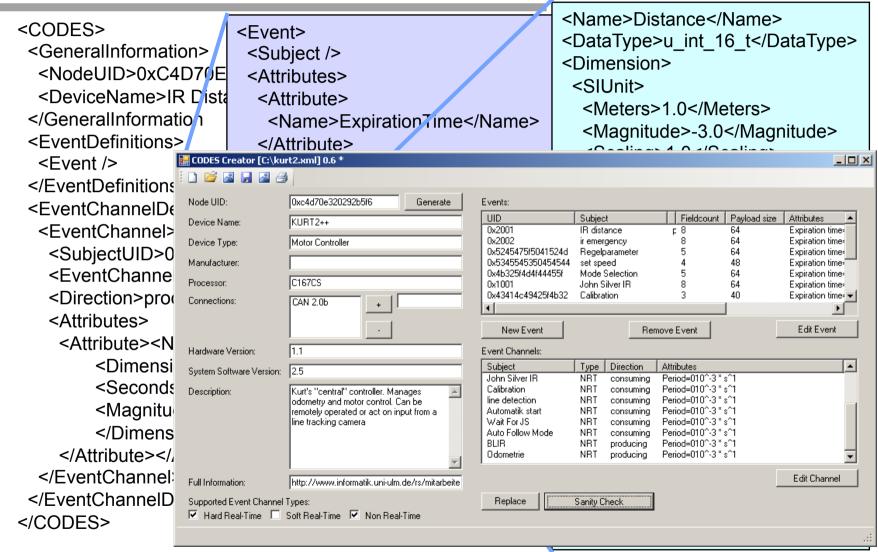

2. Events and their properties

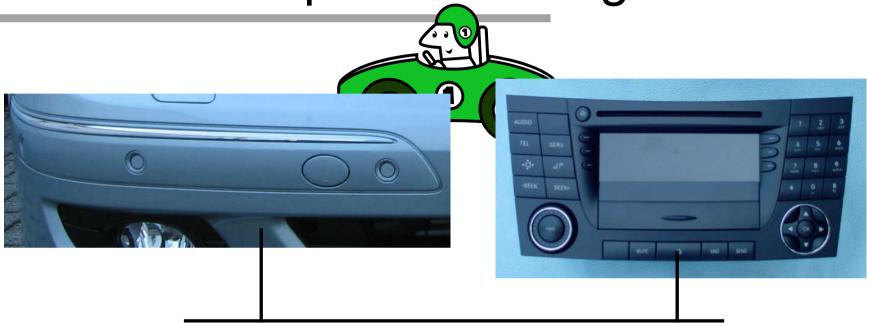
subject, attribute list (e.g. expiration time, position, range, precision), contents (encoding, units)

3. Event Channels and their properties

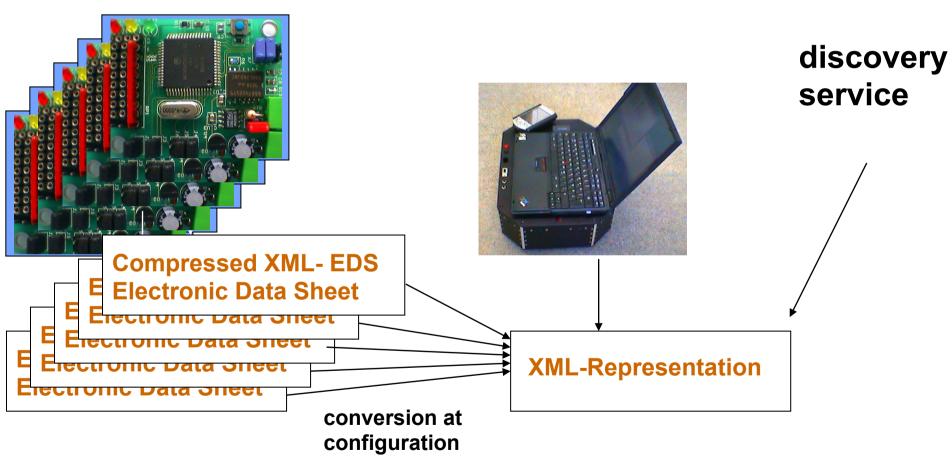

subject, attribute list (e.g. channel type, period, deadline, omission degree)

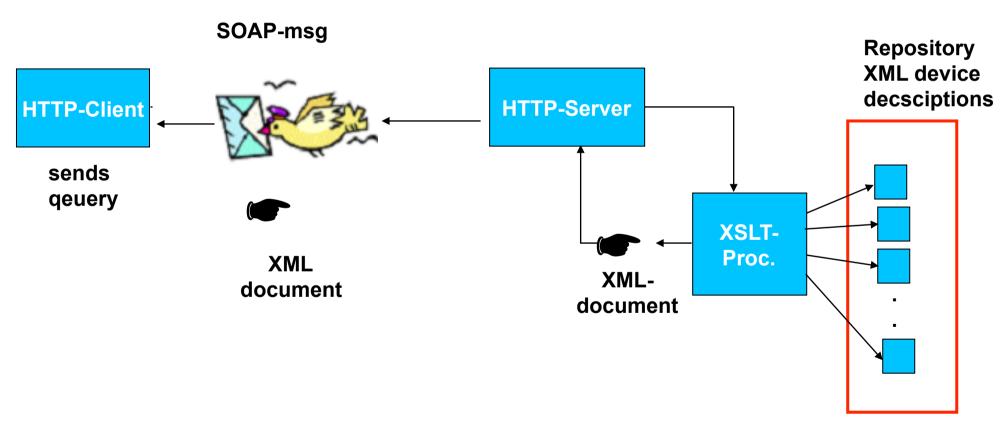
CODES – Overview




CODES - Benefits

CODES - Details


Example: A Parking Aid


- Physical compatibility
- Communication parameters
- Awareness
- Application configuration

CODES

supporting dynamic interactions: self-description and discovery

Supporting dynamic interactions: Self-Description and Discovery

Wesentliche Punkte:

Sensoren und Aktoren sind äußerst diversitär was ihre spezifischen Eigenschaften, die Schnittstelle und die Art ihrer Informationsdarstellung betrifft.

Eine informationsverarbeitende Komponente ermöglicht eine anwendungsangepasste Aufbereitung, standardisierte (Netzwerk-) Schnittstelle und Informationsdarstellung.

Eine Beschreibung der Sensoren und Aktoren ermöglicht eine dynamische Konfiguration und Erweiterung eines Sensor/Aktor-Systems.