Otto-von-Guericke Universität Magdeburg Grundlagen der Technische Informatik (GTI)

Aufgabenblatt 4

Abgabetermin: 15.11.-17.11.2010

- 1. Gegeben sei folgende Wertetabelle, die Eingangswerte $D = \{d_3d_2d_1d_0\}$ auf die Ausgangswerte $X = \{x_3x_2x_1x_0\}$ abbildet.
 - a) Welche Funktion bildet die Wertetabelle ab?
 - b) Entwickeln sie mit Hilfe von vier Karnaughdiagrammen eine minimale Schaltfunktion für X.

$d_3d_2d_1d_0$	$x_3x_2x_1x_0$
0000	0000
0001	0001
0010	0011
0011	0010
0100	0110
0101	0111
0110	0101
0111	0100
1000	1100
1001	1101

- 2. Wie verändern sich die in Aufgabe 1 ermittelten minimalen Ausdrücke von $X = \{x_3x_2x_1x_0\}$ wenn für die Werte von D = 1010 bis D = 1111 in allen Elementen von X eine "0" ausgegeben werden soll.
- 3. a) Wandeln Sie den logischen Ausdruck $AB + \overline{A}\overline{B} + BC$ in die konjunktive Normalform um!
 - b) Leiten Sie die kanonisch konjunktive Normalform der Funktion her.
- 4. Geben Sie einen Ausdruck an, der die folgende Schaltfunktion ausschließlich mit NOR-Gattern realisiert:

$$y = AB + \overline{A}\,\overline{B} + \overline{B}C\overline{D}$$

5. Realisieren Sie die folgende Schaltfunktion mit einem 4:1 Multiplexer (4 Eingänge, 2 Steuerleitungen, 1 Ausgang) und zugehöriger Peripheriebeschaltung.

$$y = A + BD + CD + \overline{B}\,\overline{D}$$

Hinweis: Wählen Sie als Steuerleitungen die Variablen B und D.