
1 J. Kaiser, IVS-EOS
AOSI: Distributed Operating Systems
IVS-EOS Wintersemester 2011

AOSI!

Models of Communication	

2 J. Kaiser, IVS-EOS
AOSI: Distributed Operating Systems
IVS-EOS Wintersemester 2011

Which model of communication?!

What kind of addressing and
routing should be supported by

the network?!
!

Which abstractions in the
programming model?!

CO-OPERATIVE SYSTEMS

3 J. Kaiser, IVS-EOS
AOSI: Distributed Operating Systems
IVS-EOS Wintersemester 2011

Message Passing
Explicit communication via send and receive: Message passing.

comm.
network

send

P P

P
P

queue

process
Distributed
Processes

Problem: very low level, very general, poorly defined semantics of communication

P

send.

receive receive

4 J. Kaiser, IVS-EOS
AOSI: Distributed Operating Systems
IVS-EOS Wintersemester 2011

Remote Procedure Call
Function shipping initiates computations in a remote processing entity.
Example: Remote Procedure call.

comm.
network

call
proc.

call
proc. P P

P
P

memory

process
Distributed
Processes

Problem: computation bottlenecks, fault semantics, references.

P

5 J. Kaiser, IVS-EOS
AOSI: Distributed Operating Systems
IVS-EOS Wintersemester 2011

Distributed Shared memory

DSM (Data shipping) maintains the read/write semantics of memory

comm.
network

read

write

read

write

read

write

read

write
P P

P
P

memory

process
Distributed
Shared
Memory

Problem: Consistency in the presence of concurrency and communcation delays

read

write
P

6 J. Kaiser, IVS-EOS
AOSI: Distributed Operating Systems
IVS-EOS Wintersemester 2011

Abstractions for Communication

Message passing

Remote Procedure Call

Remote Object Invocation

Distributed shared memory

Notifications

Publish Subscribe

Shared data spaces

7 J. Kaiser, IVS-EOS
AOSI: Distributed Operating Systems
IVS-EOS Wintersemester 2011

Abstractions for Communication

Space Coupling: References must be known
Explicit specification of the destination, i.e. producer must know where to send
the message. Message contains an ID specifying an address or name.

Flow coupling: Control transfer with communication
Defines whether there is a control transfer coupled with a message transfer.
E.g. if the sender blocks until a message is correctly received.

Coupling in time: Both sides must be active
Communication can only take place if all partners are up and active.

Dimensions of Dependencies:

8 J. Kaiser, IVS-EOS
AOSI: Distributed Operating Systems
IVS-EOS Wintersemester 2011

Message passing

producer abstraction consumer interface thread

logical channel

Notation acc. P. Eugster: Type-Based
Publish Subscribe, PhD-thesis, EPFL,
Nr. 2503, 2001

*

*

primitives: send (), receive ()

Coupling: space, time

Connected socket, e.g. TCP

9 J. Kaiser, IVS-EOS
AOSI: Distributed Operating Systems
IVS-EOS Wintersemester 2011

Remote Procedure Call (RPC)

proxy, stub skeleton

Coupling:
Space: destination is explicitely specified
Flow: blocks until message is delivered
Time: both sides must be active

Relation: one-to-one

10 J. Kaiser, IVS-EOS
AOSI: Distributed Operating Systems
IVS-EOS Wintersemester 2011

Asynchronous RPC with pull

Variations of RPC

Asynchronous RPC with call-back

Coupling:
Space: destination is

 explicitely specified
Flow: no flow coupling
Time: both sides must be active

Example: Concurrent Smalltalk

Example: Eiffel

Relation: one-to-one

11 J. Kaiser, IVS-EOS
AOSI: Distributed Operating Systems
IVS-EOS Wintersemester 2011

Examles:
Java

Relation: one-to-many

Coupling:
Space: Yes (Observable/Observer pattern (delegation))
Flow: none
Time: both sides must be active (notification performed by RMI)

Notification

Observer/
listener

observable

registration

notification

12 J. Kaiser, IVS-EOS
AOSI: Distributed Operating Systems
IVS-EOS Wintersemester 2011

managebility!

Interaction Structure in Co-operative Systems

many-!
to-!
many!

sharing information and co-ordinating acitvities!goal!

13 J. Kaiser, IVS-EOS
AOSI: Distributed Operating Systems
IVS-EOS Wintersemester 2011

logical
container

Relation: many-to-many

Coupling:
Space: none
Flow: none
Time: none

Examples:
Linda Tuple Space
Java Spaces
ADS Data field

Shared Data Spaces

14 J. Kaiser, IVS-EOS
AOSI: Distributed Operating Systems
IVS-EOS Wintersemester 2011

Shared Data Spaces

Processes communicate via the "Tuple" Space,
A tuple is only data, no address, no identifier,
A tuple is a data structure similar to a struct in C,

Examples: ("3numbers", 3, 6, 7), ("matrix" , 1, 5, 3.23, 8),
 ("faculty", "is_member_of", "franz", "maria", "otto")

Primitives (operations) in LInda:
 op. in: takes (and removes) an element from the tuple space
 op. read: reads an element from the tuple space
 op. out: puts a tuple into the tuple space
 op. eval: allows to eveluate the fields of a tuple, results are put in the

 tuple space [example: ("product", mult(4,7))]

No Tuple is ever (over-) written! "out" always put a new item in the space.

15 J. Kaiser, IVS-EOS
AOSI: Distributed Operating Systems
IVS-EOS Wintersemester 2011

Shared Data Spaces
Content-Based Addressing by Tuple matching:

All fields in a template are compared to all tuples.
A match of a template occurs if:

 tuple has the same number of fields
 AND types of fileds are equivalent
 AND contents corresponds

Example:
<"distance´_sensor", "N", 23>
<"distance´_sensor", "E", 127>
<"distance´_sensor", "S", 127>
<"distance´_sensor", "W", 12>

in(<"distance_sensor", " ", ?i> : reads all distance sensors and removes their
 values from the space.
read(<"distance_sensor", S, ?i>: subsequent read blocks until new S-value has been

 put to the Space.

16 J. Kaiser, IVS-EOS
AOSI: Distributed Operating Systems
IVS-EOS Wintersemester 2011

Shared Data Spaces

<"counter", 64>

<s.count> := myTS.take (<"counter", ?i>);
myTS.write (<"counter", count+1>);

Pk

<s.count> := myTS.take (<"counter", ?i>);
myTS.write (<"counter", count+1>);

Pm

Co-ordination

17 J. Kaiser, IVS-EOS
AOSI: Distributed Operating Systems
IVS-EOS Wintersemester 2011

Shared Data Spaces

Immutable Data Storage:

 no write operation!

 "out" always adds a data element to the storage

 destructive "in" and non-destructive "read"

 consistency is preserved by ordering accesses

 examples: Linda, JavaSpaces

18 J. Kaiser, IVS-EOS
AOSI: Distributed Operating Systems
IVS-EOS Wintersemester 2011

Java Spaces

•  Spaces are shared

•  Spaces are persistent

•  Spaces are associative

•  Spaces are transactionally
secure

•  Spaces let you exchange
executable content

In Linda, the Space stores Tuples of simple fields,
in Java Spaces the Space stores Tuples of Objects! Figure from:

http/www.javaworld.com/javaworld/jw-11-1999/jw-11-
jiniology.html

19 J. Kaiser, IVS-EOS
AOSI: Distributed Operating Systems
IVS-EOS Wintersemester 2011

write: Places one copy of an entry into a space. If called multiple times with the same
entry, then multiplecopies of the entry are written into the space.

read: Takes an entry that is used as a template and returns a copy of an object in the
(readIfExists) space that matches the template. If no matching objects are in the space, then

read may wait a user-specified amount of time until a matching entry arrives in
the space.

take: Works like read, except that the matching entry is removed from the space and
(takeIfExists) returned as the result of the take.

notify: Takes a template and an object and asks the space to notify the object whenever

entries that match the template are added to the space. This notification
mechanism is built on Jini's distributed event model for a reactive style of
programming.

snapshot: Provides a method of minimizing the serialization that occurs whenever entries or

templates are used; you can use snapshot to optimize certain entry usage
patterns in your applications.

Java Spaces

20 J. Kaiser, IVS-EOS
AOSI: Distributed Operating Systems
IVS-EOS Wintersemester 2011

http://www.gigaspaces.com/docs/JiniApi/net/jini/space/JavaSpace.html

Java Spaces

21 J. Kaiser, IVS-EOS
AOSI: Distributed Operating Systems
IVS-EOS Wintersemester 2011

logical
container

logical
channel

Centralized
Server

Distributed
Realization

Tupel
Space

Publish/
Sunscribe

Spaces vs. Notification Infrastructures

22 J. Kaiser, IVS-EOS
AOSI: Distributed Operating Systems
IVS-EOS Wintersemester 2011

logical
channel

Publish/Subscribe

Relation: many-to-many

Coupling:
Space: none
Flow: none
Time: none

Examples:
Information Bus
NDDS
Real-Time P/S
COSMIC
....
....

23 J. Kaiser, IVS-EOS
AOSI: Distributed Operating Systems
IVS-EOS Wintersemester 2011

The Publisher/Subscriber Model

Many-to-many communication

Support for event-based spontaneous (generative) communication

Anonymous communication

event
distribution

notify

Subscriber

publish (push)

Publisher Principle: Keep control local and link
 systems via event distribution channels

Information Bus (Oki, Pfluegl, Siegel, Skeen)
TIB/Rendevous
iBus (Maffeis)
Real-Time P/S (Rajkumar, Gagliardi, Sha)
NDDS (Real-Time Innovations, Inc.)
SIENA (Carzanoga, Rosenblum, Wolf)
Directed Diff. (Intanagonwiwat, Govindan, Estrin)
COSMIC/FAMOUSO (Kaiser, Schulze)

Publisher

Subscriber Subscriber

Subscriber

24 J. Kaiser, IVS-EOS
AOSI: Distributed Operating Systems
IVS-EOS Wintersemester 2011

Event Handler

Per. RT-C
[acceleration]

Spor. RT-C
[alarm]

Non- RT-C
[config.-params.]

P/S in a smart sensor application
acceleration sensor

event: acceleration
publish (subject,attr.,
[acceleration]);

configuration parameters
subscribe (subject-uid, ...)

acceleration
measurement

&
crash detection

<network address,
[config.params]>

<network address
[acceleration]>

network interface

<network address
[crash alarm]>

event: alarm
publish (subject, attr.,
[alarm]);

25 J. Kaiser, IVS-EOS
AOSI: Distributed Operating Systems
IVS-EOS Wintersemester 2011

Publish/Subscribe

Problems:

1.  Routing: How comes the information from the Publisher to the Subscribers?

•  Content is used
•  Subject is used
•  Type is used

2.  Filtering: How can we achieve that only those events are received that are needed?
•  How to specify filters?
•  Where to filter:

•  Sender?
•  Receiver?

26 J. Kaiser, IVS-EOS
AOSI: Distributed Operating Systems
IVS-EOS Wintersemester 2011

event:= <subject, funct_attr, extra-funct_attr, contents>

event_channel:= <subject, extra-funct_attribute_list>

Event Specification and Attributes
events: abstraction defining an individual occurence of an event

treat events as time/value entities
allow to describe context and quality attributes
exploit event attributes by multi-level filtering

event abstraction of the infrastructure, i.e. explicit specification of
channels: the channel through which the events are disseminated

provide dissemination guarantees
support different synchrony classes
encapsulate network configuration functions

distance_event:= <UID, rel_pos., abs_pos., netw_zone, timestamp, validity, distance>
crash_event:= <UID, abs_pos., netw_zone,timestamp, validity, acceleration>

example:

distance_channel:= <UID, periodic soft real-time, period, omission degree, not_h, exc_h>
crash_channel:= <UID, periodic hard real-time, reaction_time, omission degree, exc_h>

example:

27 J. Kaiser, IVS-EOS
AOSI: Distributed Operating Systems
IVS-EOS Wintersemester 2011

Abstraction Space Coupling Time Coupling Flow Coupling

•  Connected Sockets Yes Yes Yes
•  Unconnected Sockets Yes Yes Consumer
•  RPC Yes Yes Consumer
•  Oneway RPC Yes Yes No
•  async (Pull) Yes Yes No
•  async (Callback) Yes Yes No
•  Implicit Future Yes Yes No
•  Notifations Yes Yes No
 (Observer Design Pattern)
•  Tuple Spaces (Pull) No No Consumer
•  Message Queues (Pull) No No Consumer
•  Subject-Based P/S No may be No
•  Content-Based P/S No may be No

Overview

28 J. Kaiser, IVS-EOS
AOSI: Distributed Operating Systems
IVS-EOS Wintersemester 2011

What are the options?!

message based!

Remote procedure Call!

Communication!
relation!

Routing!
mechanism!

Binding!
Time!

Distributed shared memory!

Shared Data Spaces!

Publish-Subscribe!

symmetric! address! design time!

client-server! address! design time!

central! address! design time!

central! contents! run time!

Producer-!
consumer!

contents/!
subject!

run time!

Communication!
abstraction!

message!

invocation!

memory cell!

object,tupel!

event!

Communication!
model!

